Skip to Content
Merck
  • Convenient QSAR model for predicting the complexation of structurally diverse compounds with beta-cyclodextrins.

Convenient QSAR model for predicting the complexation of structurally diverse compounds with beta-cyclodextrins.

Bioorganic & medicinal chemistry (2008-12-06)
Alfonso Pérez-Garrido, Aliuska Morales Helguera, Adela Abellán Guillén, M Natália D S Cordeiro, Amalio Garrido Escudero
ABSTRACT

This paper reports a QSAR study for predicting the complexation of a large and heterogeneous variety of substances (233 organic compounds) with beta-cyclodextrins (beta-CDs). Several different theoretical molecular descriptors, calculated solely from the molecular structure of the compounds under investigation, and an efficient variable selection procedure, like the Genetic Algorithm, led to models with satisfactory global accuracy and predictivity. But the best-final QSAR model is based on Topological descriptors meanwhile offering a reasonable interpretation. This QSAR model was able to explain ca. 84% of the variance in the experimental activity, and displayed very good internal cross-validation statistics and predictivity on external data. It shows that the driving forces for CD complexation are mainly hydrophobic and steric (van der Waals) interactions. Thus, the results of our study provide a valuable tool for future screening and priority testing of beta-CDs guest molecules.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
1-Octanol, suitable for HPLC, ≥99%
Sigma-Aldrich
2-Methoxyethanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Chloroform, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Acetone, puriss., meets analytical specification of Ph. Eur., BP, NF, ≥99% (GC)
Sigma-Aldrich
2-Methyl-1-propanol, ACS reagent, ≥99.0%
Sigma-Aldrich
3-Methyl-1-butanol, ACS reagent, ≥98.5%
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
1-Octanol, ACS reagent, ≥99%
Sigma-Aldrich
Chloroform, puriss. p.a., reag. ISO, reag. Ph. Eur., 99.0-99.4% (GC)
Sigma-Aldrich
Acetone, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
Methanol, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
2-Methyl-1-propanol, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99% (GC)
Sigma-Aldrich
Chloroform, contains amylenes as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
1-Propanol, ≥99% (GC), purum
Sigma-Aldrich
Tetrahydrofuran, contains 200-400 ppm BHT as inhibitor, ACS reagent, ≥99.0%
Sigma-Aldrich
1-Propanol, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetone, histological grade, ≥99.5%
Sigma-Aldrich
Tetrahydrofuran, ≥99.0%, contains 200-400 ppm BHT as inhibitor, ReagentPlus®
Sigma-Aldrich
3-Methyl-1-butanol, reagent grade, 98%
Sigma-Aldrich
2-Octanol, 97%
Sigma-Aldrich
Tetrahydrofuran, ACS reagent, ≥99.0%, contains 200-400 ppm BHT as inhibitor
Sigma-Aldrich
2-Methyl-1-propanol, 99.5%
Sigma-Aldrich
Acetone, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Barbital
Sigma-Aldrich
Prostaglandin E2, synthetic, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Griseofulvin, from Penicillium griseofulvum, 97.0-102.0%
Sigma-Aldrich
Hydrocortisone 21-acetate, ≥98% (HPLC)
Sigma-Aldrich
Hydrocortisone 21-acetate, meets USP testing specifications
Sigma-Aldrich
Ethylbenzene solution, NMR reference standard, 0.1% in chloroform-d (99.8 atom % D), TMS 0.01 %, NMR tube size 5 mm × 8 in. , ultra-thin wall