Skip to Content
Merck
All Photos(2)

Key Documents

265500

Sigma-Aldrich

Silver

powder, <250 μm, 99.99% trace metals basis

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
Ag
CAS Number:
Molecular Weight:
107.87
EC Number:
MDL number:
UNSPSC Code:
12141740
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

99.99% trace metals basis

form

powder

resistivity

1.59 μΩ-cm, 20°C

particle size

<250 μm

bp

2212 °C (lit.)

mp

960 °C (lit.)

density

10.49 g/cm3 (lit.)

SMILES string

[Ag]

InChI

1S/Ag

InChI key

BQCADISMDOOEFD-UHFFFAOYSA-N

Pictograms

Environment

Signal Word

Warning

Hazard Statements

Precautionary Statements

Hazard Classifications

Aquatic Acute 1 - Aquatic Chronic 1

Storage Class Code

13 - Non Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

T Prameela Devi et al.
Indian journal of experimental biology, 51(7), 543-547 (2013-08-01)
A total of 75 isolates belonging to five different species of Trichoderma viz., T. asperellum, T. harzianum, T. longibrachiatum, T. pseudokoningii and T. virens were screened for the production of silver nanoparticles. Although all the isolates produced nanoparticles, T. virens
Ii-Ho Kim et al.
Journal of nanoscience and nanotechnology, 13(5), 3660-3664 (2013-07-19)
Ag-dispersed Bi0.5Sb1.5Te3 was prepared successfully by silver acetate (AgOAc) decomposition and hot pressing. The Ag nanoparticles were well-dispersed in the Bi0.5Sb1.5Te3 matrix, and acted as phonon scattering centers effectively. The electrical conductivity increased systematically with increasing amount of Ag nanoparticle
Abhijeet Mishra et al.
Journal of nanoscience and nanotechnology, 13(7), 5028-5033 (2013-08-02)
The primary challenge in developing nanoparticle based enzymatic devices is to be able to chemically immobilize an enzyme, which will retain its activity or improve its function while being attached to the nanoparticle. This would be of even greater significance
Sławomir Garboś et al.
Roczniki Panstwowego Zakladu Higieny, 64(1), 31-36 (2013-06-26)
A water filtered by jug filter system (JFS) can be applied for the preparation of food products, as well as it can be directly consumed as drinking water. In the European Union, in both above-mentioned cases the quality of water
Rui Wang et al.
Journal of nanoscience and nanotechnology, 13(6), 3851-3854 (2013-07-19)
The present studies reveal that silver nanoparticles (AgNPs) can induce apoptosis and enhance radio-sensitivity on cancer cells. In this paper, we mainly investigated the effect of AgNPs on rat glioma C6 cells upon the combination treatment of hyperthermia treatment (HTT).

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service