400866
Iron(II) oxide
−10 mesh, ≥99.6% trace metals basis
Synonym(s):
Ferrous oxide, Iron monooxide
Sign Into View Organizational & Contract Pricing
All Photos(3)
About This Item
Recommended Products
Quality Level
Assay
≥99.6% trace metals basis
form
powder
impurities
≤5% free iron
particle size
−10 mesh
density
5.7 g/mL at 25 °C (lit.)
application(s)
battery manufacturing
SMILES string
O=[Fe]
InChI
1S/Fe.O
InChI key
UQSXHKLRYXJYBZ-UHFFFAOYSA-N
Looking for similar products? Visit Product Comparison Guide
General description
Iron(II) oxide nanoparticles possess unique properties such as superparamagnetic behavior, ease of surface modification, and biocompatibility. They are applied in the fields of photocatalysis, magnetic storage media, targeted drug delivery, and gas sensing.
Iron(II) oxide, also known as ferrous oxide or wustite, is a chemical compound with the formula FeO. It is a fine, grey-black powder with a 10-mesh particle size. Iron(II) oxide adopts a cubic, rock salt structure and often exists as a non-stoichiometric, iron-deficient compound in which some of the iron is oxidized to a 3+ oxidation state. Iron(II) oxide is shelf-stable at room temperature but at 575 °C tends to disproportionate to iron metal and Fe3O4. One of its primary applications is as a black pigment in paints, inks, and ceramics.
Storage Class Code
13 - Non Combustible Solids
WGK
nwg
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Biosynthesized FeO nanoparticles coated carbon anode for improving the performance of microbial fuel cell
International Journal of Hydrogen Energy, 42, 26488-26495 (2017)
Journal of the American Chemical Society, 133(10), 3249-3251 (2011-02-19)
The photocatalytic formation of a non-heme oxoiron(IV) complex, [(N4Py)Fe(IV)(O)](2+) [N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine], efficiently proceeds via electron transfer from the excited state of a ruthenium complex, [Ru(II)(bpy)(3)](2+)* (bpy = 2,2'-bipyridine) to [Co(III)(NH(3))(5)Cl](2+) and stepwise electron-transfer oxidation of [(N4Py)Fe(II)](2+) with 2 equiv
Journal of nanoscience and nanotechnology, 10(7), 4145-4153 (2010-12-07)
The magnetic resonance imaging contrast agent, the so-called Endorem colloidal suspension on the basis of superparamagnetic iron oxide nanoparticles (mean diameter of 5.5 nm) coated with dextran, were characterized on the basis of several measurement techniques to determine the parameters
ACS applied materials & interfaces, 3(9), 3666-3672 (2011-08-16)
A cost-effective and versatile methodology for bottom-up patterned growth of inorganic and metallic materials on the micro- and nanoscale is presented. Pulsed electrodeposition was employed to deposit arbitrary patterns of Ni, ZnO, and FeO(OH) of high quality, with lateral feature
Chemistry (Weinheim an der Bergstrasse, Germany), 17(31), 8726-8730 (2011-06-17)
Iron oxide coated platinum nanowires (Pt@Fe(2)O(3)NWs) with a diameter of 2.8 nm have been prepared by the oxygen oxidation of FePt NWs in oleylamine. These "cable"-like NWs were characterised by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and X-ray
Articles
Magnetic materials find diverse applications from data storage to renewable energy.
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service