Skip to Content
Merck
All Photos(1)

Key Documents

939331

Sigma-Aldrich

Nickel(II) sulfate hexahydrate

new

≥99.99% trace metals basis

Synonym(s):

Nickelous Sulfate, Hexahydrate, Battery grade nickel sulfate, Nickel monosulfate hexahydrate, Nickel sulphate hexahydrate

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
NiO4S · 6H2O
CAS Number:
Molecular Weight:
262.85
MDL number:

type

(High purity Salts)

Quality Level

Assay

≥99.99% trace metals basis
98-102% (EDTA, complexometric)

form

powder or crystals

impurities

≤1000 ppm trace metals basis

color

faint blue to dark blue-green

pH

4.3-4.7 (20 °C, 100 g/L in water)

solubility

water: soluble

density

2.07 g/cm3 at 20 °C

anion traces

chloride (Cl-): ≤20 ppm

cation traces

Al: <50 ppm
Ca: <50 ppm
Co: <50 ppm
Cu: <50 ppm
Fe: <50 ppm
K: <50 ppm
Mg: <50 ppm
Na: <50 ppm
Pb: <50 ppm
Zn: <50 ppm

InChI

1S/Ni.H2O4S.6H2O/c;1-5(2,3)4;;;;;;/h;(H2,1,2,3,4);6*1H2/q+2;;;;;;;/p-2

InChI key

RRIWRJBSCGCBID-UHFFFAOYSA-L

Looking for similar products? Visit Product Comparison Guide

General description

Nickel(II) sulfate hexahydrate possesses a tetragonal crystal structure and is classified as a rare mineral called retgersite. This compound has a distinct blue-green color and demonstrates high solubility. It is insoluble in ethanol and ammonia. It is commonly used as a reliable source of Ni2+ ions for electroplating processes. Nickel(II) sulfate hexahydrate is a paramagnetic in nature.

Application

Nickel-rich cathodes are widely favored due to their exceptional energy density and impressive rate capability for Lithioum-ion batteries. Nickel stands out for its ability to provide higher cell voltage, maintain a consistent voltage profile, and exhibit delocalized electron density, resulting in excellent electronic conductivity.

Therefore, Nickel(II) sulfate hexahydrate has been widely used as a key component for the synthesis of Cathode for Lithium-ion batteries. - Spherical NCM 622 and Li[Ni0.9Co0.05Mn0.05]O2 (NCM 900505) were synthesized via a co-precipitation method using Nickel(II) sulfate hexahydrate. In order to achieve the desired energy density, it is necessary to maximize both the nickel content in the cathode and the cutoff voltage. [] - to synthesis single-crystal, Ni-rich NCM and polycrystalline NCM cathodes with various Ni content by coprecipitation method . These Ni-rich layered cathodes like NCM, NCA, and NCMA ([Ni1–x–yCox(Mn and/or Al)y]O2) are the top choices for powering upcoming electric vehicles. It is found that polycrystalline NCM cathodes are prone to intergranular microcracking during cycling, single crystal NCM cathodes demonstrate resilience against mechanical fracture, even under highly charged conditions or repeated cycles. Due to limited lithium-ion diffusion pathways, the electrochemical performance of single crystal -NCM cathodes, particularly in terms of capacity and cycling stability, is lower compared to that of polycrystalline-NCM cathodes. The difference in the electrochemical performance of single crystal -NCM and polycrystalline-NCM cathodes grows as the Ni fraction increases. In addition, Nickel(II) sulfate hexahydrate is widely used for electroplating for producing metallic coatings. Nickel(II) sulfate hexahydrate can also be used as a catalyst in: -Pt50Ni50 catalysts supported on MCM-41 were produced using wet co-impregnation. These catalysts were then employed for hydrogenation reactions of benzene in gas phase. The morphology of the metal phase within the catalysts has a notable impact on the conversion of benzene to cyclohexane. Factors like reduction temperature, NaBH4 concentration, and reduction medium influence the particle morphology. []

Features and Benefits

  • Water soluble
  • Medium purity (99.9%)
  • Low trace metals in ppm level
  • Cost effective Suitable for battery applications
  • Recycled catalyst

Signal Word

Danger

Hazard Classifications

Acute Tox. 4 Inhalation - Acute Tox. 4 Oral - Aquatic Acute 1 - Aquatic Chronic 1 - Carc. 1A Inhalation - Muta. 2 - Repr. 1B - Resp. Sens. 1 - Skin Irrit. 2 - Skin Sens. 1 - STOT RE 1 Inhalation

Target Organs

Respiratory Tract

Storage Class Code

6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Electrodeposition and corrosion behavior of nano-structured Ni-WC and Ni-Co-WC composite coating.
Elkhoshkhany, N
Journal of alloys and compounds, 695, 1505?1514-1505?1514 (2017)
Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy
Liu, Tongchao et. al.
Nature Communications, 12, 6024-6024 (2021)
The Effect of Preparation Parameters of MCM-41 Supported Pt/Ni Catalysts and their Hydrogenation Properties.
Bakar, N. H. H. A. et. al.
Catalysis Letters, 130(3?4), 440?447-440?447 (2009)
Capacity fading mechanisms in Ni-Rich Single-Crystal NCM cathodes.
Ryu, H. et. al.
ACS Energy Letters, 6(8), 2726?2734-2726?2734 (2021)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service