P3637
Phospho(enol)pyruvic acid cyclohexylammonium salt
≥97% (enzymatic)
Synonym(s):
2-(Phosphonooxy)-2-propenoic acid monopotassium salt
Sign Into View Organizational & Contract Pricing
All Photos(1)
About This Item
Recommended Products
Quality Level
Assay
≥97% (enzymatic)
form
powder
storage temp.
−20°C
SMILES string
NC1CCCCC1.OC(=O)C(=C)OP(O)(O)=O
InChI
1S/C6H13N.C3H5O6P/c7-6-4-2-1-3-5-6;1-2(3(4)5)9-10(6,7)8/h6H,1-5,7H2;1H2,(H,4,5)(H2,6,7,8)
InChI key
VHFCNZDHPABZJO-UHFFFAOYSA-N
Related Categories
Biochem/physiol Actions
Phospho(enol)pyruvic acid (PEP) is involved in glycolysis and gluconeogenesis. In glycolysis, PEP is metabolized by pyruvate kinase to yield pyruvate. In plants, PEP is involved in the formation of aromatic amino acids as well as in the carbon fixation pathway.
Storage Class Code
11 - Combustible Solids
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Personal Protective Equipment
dust mask type N95 (US), Eyeshields, Gloves
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Cold Spring Harbor symposia on quantitative biology, 76, 325-334 (2012-01-21)
Proliferating cells adapt metabolism to support the conversion of available nutrients into biomass. How cell metabolism is regulated to balance the production of ATP, metabolite building blocks, and reducing equivalents remains uncertain. Proliferative metabolism often involves an increased rate of
Biotechnology and bioengineering, 55(2), 305-316 (1997-07-20)
The goal of this work was to obtain rapid sampling technique to measure transient metabolites in vivo. First, a pulse of glucose was added to a culture of the yeast Saccharomyces cerevisiae growing aerobically under glucose limitation. Next, samples were
Rewiring of glycolysis in cancer cell metabolism.
Cell cycle (Georgetown, Tex.), 9(21), 4253-4253 (2010-11-04)
Journal of bacteriology, 184(1), 152-164 (2001-12-14)
The intracellular carbon flux distribution in wild-type and pyruvate kinase-deficient Escherichia coli was estimated using biosynthetically directed fractional 13C labeling experiments with [U-13C6]glucose in glucose- or ammonia-limited chemostats, two-dimensional nuclear magnetic resonance (NMR) spectroscopy of cellular amino acids, and a
FEMS microbiology reviews, 29(4), 765-794 (2005-08-17)
In many organisms, metabolite interconversion at the phosphoenolpyruvate (PEP)-pyruvate-oxaloacetate node involves a structurally entangled set of reactions that interconnects the major pathways of carbon metabolism and thus, is responsible for the distribution of the carbon flux among catabolism, anabolism and
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service