Skip to Content
Merck
All Photos(1)

Key Documents

Safety Information

14504

Sigma-Aldrich

Poly(ethylene glycol) bis(amine)

Mw 6,000, carboxyl reactive, amine

Synonym(s):

Polyethylene glycol, O,O′-Bis(2-aminoethyl)polyethylene glycol, Diaminopolyethylene glycol, PEG-diamine, Polyoxyethylene bis(amine)

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
H2N(CH2CH2O)nCH2CH2NH2
CAS Number:
MDL number:
UNSPSC Code:
12162002
PubChem Substance ID:
NACRES:
NA.23

product name

Poly(ethylene glycol) bis(amine), Mw 6,000

Quality Level

reaction suitability

reagent type: cross-linking reagent
reactivity: carboxyl reactive

Ω-end

amine

α-end

amine

polymer architecture

shape: linear
functionality: homobifunctional

InChI

1S/C6H16N2O2/c7-1-3-9-5-6-10-4-2-8/h1-8H2

InChI key

IWBOPFCKHIJFMS-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Storage Class Code

10 - Combustible liquids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

JAN Code

14504-1G-F:
14504-250MG-F:
14504-VAR-F:
14504-BULK-F:


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Xu Chen et al.
International journal of biological macromolecules, 98, 557-564 (2017-02-12)
This study investigated structural, in vitro digestion and physicochemical properties of normal rice starch (NRS)/flour (NRF) complexed with maize oil (MO) through heat-moisture treatment (HMT). The NRS-/NRF-MO complex displayed an increased pasting temperature and a decreased peak viscosity. After HMT
Eric Schopf et al.
Chemical communications (Cambridge, England), (32)(32), 4818-4820 (2009-08-05)
A pyrene-functionalized polymer was patterned via electron beam lithography onto a silicon wafer and shown to selectively bind with carbon nanotubes.
N P Desai et al.
Journal of microencapsulation, 17(6), 677-690 (2000-11-04)
A mixture of alginate and polyethylene glycol acrylate was investigated as a system for the encapsulation of islets of Langerhans. This system showed dual crosslinkability: the alginate was ionically crosslinked by multivalent cations, and the PEG was covalently crosslinked by
Joseph Deere et al.
Langmuir : the ACS journal of surfaces and colloids, 24(20), 11762-11769 (2008-09-27)
The use of alpha-chymotrypsin to cleave covalently bound N-acetyl- l-tryptophan (Ac-Trp-OH) from the surfaces of aminopropylated controlled pore glass (CPG) and the polymer PEGA 1,900 was investigated. Oligoglycine spacer chains were used to present the covalently attached Ac-Trp-OH substrate to
C S Lee et al.
Artificial organs, 21(9), 1002-1006 (1997-09-01)
Various modifications of alginate-poly-L-lysine microcapsules were made, such as the inclusion of polyethylenimine (PEI) or carboxyl methyl cellulose (CMC) in the core and the coating of bis(polyoxyethylene bis[amine]) (PEGA) onto the microcapsule membrane surface. A characterization of the modified microcapsules

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service