Skip to Content
Merck
All Photos(2)

Key Documents

Safety Information

209694

Sigma-Aldrich

Ruthenium

powder, −200 mesh, 99.9% trace metals basis

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
Ru
CAS Number:
Molecular Weight:
101.07
EC Number:
MDL number:
UNSPSC Code:
12141739
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

99.9% trace metals basis

form

powder

resistivity

7.1 μΩ-cm, 0°C

particle size

−200 mesh

bp

3900 °C (lit.)

mp

2310 °C (lit.)

density

12.45 g/cm3 (lit.)

SMILES string

[Ru]

InChI

1S/Ru

InChI key

KJTLSVCANCCWHF-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

FSL

Group 2: Flammable solids
Metal powder
Hazardous rank II
1st combustible solid

JAN Code

209694-VAR:
209694-1G:
209694-BULK:
209694-5G:


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Lipeng Wu et al.
Journal of the American Chemical Society, 135(10), 3989-3996 (2013-02-20)
An efficient and regioselective ruthenium-catalyzed hydroaminomethlyation of olefins is reported. Key to success is the use of specific 2-phosphino-substituted imidazole ligands and triruthenium dodecacarbonyl as catalyst. Both industrially important aliphatic as well as various functionalized olefins react with primary and
M Beye et al.
Physical review letters, 110(18), 186101-186101 (2013-05-21)
We have studied the femtosecond dynamics following optical laser excitation of CO adsorbed on a Ru surface by monitoring changes in the occupied and unoccupied electronic structure using ultrafast soft x-ray absorption and emission. We recently reported [M. Dell'Angela et
Direct synthesis of pyrroles by dehydrogenative coupling of β-aminoalcohols with secondary alcohols catalyzed by ruthenium pincer complexes.
Dipankar Srimani et al.
Angewandte Chemie (International ed. in English), 52(14), 4012-4015 (2013-03-08)
Rafael E Rodríguez-Lugo et al.
Nature chemistry, 5(4), 342-347 (2013-03-21)
The development of an efficient catalytic process that mimics the enzymatic function of alcohol dehydrogenase is critical for using biomass alcohols for both the production of H2 as a chemical energy carrier and fine chemicals under waste-free conditions. Dehydrogenation of
Mette T Petersen et al.
Organic letters, 15(8), 1986-1989 (2013-04-05)
A series of 5-substituted 2-pyrrolidinones was synthesized through a one-pot ruthenium alkylidene-catalyzed tandem RCM/isomerization/nucleophilic addition sequence. The intermediates resulting from RCM/isomerization showed reactivity toward electrophiles in aldol condensation reactions which provided a new entry for the total synthesis of the

Articles

Hydrogen is one of the most important resources in providing food, fuel, and chemical products for our everyday life. Sustainable catalytic hydrogen production from bioethanol has gained significant attention in recent years due to globally diminishing fossil fuel supplies, which have necessitated the search for new chemical feedstocks.

Higher transition metal silicides are ideal for anisotropic thermoelectric conversion due to their Seebeck coefficient anisotropy and mechanical properties.

Permanent magnets are an essential technology for energy conversion. Motors and generators are used to convert energy between electrical and mechanical forms.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service