Skip to Content
Merck
All Photos(3)

Key Documents

Safety Information

218219

Sigma-Aldrich

Lithium iodide

AnhydroBeads, 99%

Synonym(s):

Lithium monoiodide

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
LiI
CAS Number:
Molecular Weight:
133.85
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23
Assay:
99%
form:
beads

product line

AnhydroBeads

Quality Level

Assay

99%

form

beads

mp

446 °C (lit.)

density

3.49 g/mL at 25 °C (lit.)

SMILES string

[Li+].[I-]

InChI

1S/HI.Li/h1H;/q;+1/p-1

InChI key

HSZCZNFXUDYRKD-UHFFFAOYSA-M

Looking for similar products? Visit Product Comparison Guide

Application

Controls regioselectivity in palladium-catalyzed allylic alkylation reactions.

Legal Information

AnhydroBeads is a trademark of Sigma-Aldrich Co. LLC

Not finding the right product?  

Try our Product Selector Tool.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

ISHL Indicated Name

Substances Subject to be Indicated Names

ISHL Notified Names

Substances Subject to be Notified Names

JAN Code

218219-5KG:
218219-6X50G:
218219-BULK:
218219-6X250G:
218219-10G:4548173986609
218219-1KG:
218219-50G:4548173986623
218219-500G:
218219-6X10G:
218219-VAR:
218219-250G:4548173986616


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Hui-Ju Kang et al.
Nanomaterials (Basel, Switzerland), 10(10) (2020-10-16)
Rechargeable lithium-sulfur batteries (LSBs) are emerging as some of the most promising next-generation battery alternatives to state-of-the-art lithium-ion batteries (LIBs) due to their high gravimetric energy density, being inexpensive, and having an abundance of elemental sulfur (S8). However, one main
Yun Guang Zhu et al.
Nature communications, 8, 14308-14308 (2017-02-07)
Water contamination is generally considered to be detrimental to the performance of aprotic lithium-air batteries, whereas this view is challenged by recent contrasting observations. This has provoked a range of discussions on the role of water and its impact on
Vittoria Novelli et al.
Physical chemistry chemical physics : PCCP, 19(40), 27670-27681 (2017-10-07)
By optimizing the lithium concentration in an electrolyte to 50 mmol L
Kawatsura, M. et al.
Chemical Communications (Cambridge, England), 217-217 (1998)
Jianjian Lin et al.
Scientific reports, 4, 5769-5769 (2014-08-30)
Three-dimensional (3D) hierarchical nanoscale architectures comprised of building blocks, with specifically engineered morphologies, are expected to play important roles in the fabrication of 'next generation' microelectronic and optoelectronic devices due to their high surface-to-volume ratio as well as opto-electronic properties.

Articles

Solid-state lithium fast-ion conductors are crucial for safer, high-energy-density all-solid-state batteries, addressing conventional battery limitations.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service