Skip to Content
Merck
All Photos(1)

Key Documents

Safety Information

398594

Sigma-Aldrich

Osmium(III) chloride

99.9% trace metals basis

Synonym(s):

Osmium chloride, Osmium trichloride

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
OsCl3
CAS Number:
Molecular Weight:
296.59
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

99.9% trace metals basis

form

powder

reaction suitability

reagent type: catalyst
core: osmium

impurities

≤1500.0 ppm Trace Metal Analysis

SMILES string

Cl[Os](Cl)Cl

InChI

1S/3ClH.Os/h3*1H;/q;;;+3/p-3

InChI key

UAIHPMFLFVHDIN-UHFFFAOYSA-K

Looking for similar products? Visit Product Comparison Guide

Pictograms

Skull and crossbonesCorrosion

Signal Word

Danger

Hazard Statements

Hazard Classifications

Acute Tox. 3 Oral - Eye Dam. 1 - Skin Corr. 1B

Storage Class Code

6.1A - Combustible acute toxic Cat. 1 and 2 / very toxic hazardous materials

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

JAN Code

398594-500MG:
398594-VAR:
398594-BULK:
398594-100MG:


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

C Kavitha et al.
Royal Society open science, 4(9), 170353-170353 (2017-10-11)
Reduced graphene oxide-osmium (rGO-Os) hybrid nano dendtrites have been prepared by simple liquid/liquid interface method for the first time. The method involves the introduction of phase-transfered metal organic precursor in toluene phase and GO dispersion in the aqueous phase along
Yan Feng et al.
Scientific reports, 5, 16219-16219 (2015-11-19)
Mastery over the structure of nanoparticles might be an effective way to enhance their performance for a given application. Herein we demonstrate the design of cage-bell nanostructures to enhance the methanol tolerance of platinum (Pt) nanoparticles while remaining their catalytic

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service