Skip to Content
Merck
All Photos(1)

Key Documents

Safety Information

435171

Sigma-Aldrich

Diethoxy(3-glycidyloxypropyl)methylsilane

97%

Synonym(s):

(3-Glycidyloxypropyl)methyldiethoxysilane, [3-(2,3-Epoxypropoxy)propyl]methyldiethoxysilane

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C11H24O4Si
CAS Number:
Molecular Weight:
248.39
Beilstein:
121965
EC Number:
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

97%

form

liquid

refractive index

n20/D 1.431 (lit.)

bp

122-126 °C/5 mmHg (lit.)

density

0.978 g/mL at 25 °C (lit.)

SMILES string

CCO[Si](C)(CCCOCC1CO1)OCC

InChI

1S/C11H24O4Si/c1-4-14-16(3,15-5-2)8-6-7-12-9-11-10-13-11/h11H,4-10H2,1-3H3

InChI key

OTARVPUIYXHRRB-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Diethoxy(3-glycidyloxypropyl)methylsilane (GPMS) is an epoxysilane which can be used as a silane coupling agent for the surface treatment of a variety of materials. These silanes can also be used as adhesion promoters by modifying the surface properties of the substrates and elastomeric materials.

Application

Coverslips coated with diethoxy(3-glycidyloxypropyl)methyl silane were used as sample holders for electrostatically holding particles for optical microscopy.{52} It may be used to introduce epoxy groups to Fe3O4SiO2 nanoparticles. {53} Self assembled monolayer (SAMs) of diethoxy(3- glycidyloxypropyl)methylsilane could be formed on the oxide layer of silicon wafer to render them siloxane functionalities.{54}
GPMS can be used in the surface modification of a variety of particles such as cellulose nanocrystals, silica nanomaterials and other silicon based substrates. It functionalizes these surfaces by attaching the epoxy-silane groups with the surface molecules.

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

10 - Combustible liquids

WGK

WGK 3

Flash Point(F)

251.6 °F - closed cup

Flash Point(C)

122 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

FSL

Group 4: Flammable liquids
Type 3 petroleums
Hazardous rank III
Water insoluble liquid

JAN Code

435171-BULK:
435171-25ML:
435171-5ML:
435171-VAR:


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Colloidal Particles that Rapidly Change Shape via Elastic Instabilities.
Epstein E, et al.
Small, 11(45), 6051-6057 (2015)
Quantitative Analysis of Interdigitation Kinetics between a Polymer Melt and a Polymer Brush.
Chennevie?re A, et al.
Macromolecules, 46(17), 6955-6962 (2013)
Zwitterionic SiO 2 nanoparticles as novel additives to improve the antifouling properties of PVDF membranes
Zhu J, et al.
Royal Society of Chemistry Advances, 5(66), 53653-53659 (2015)
Quantitative molecular level understanding of ethoxysilane at poly (dimethylsiloxane)/polymer interfaces
Zhang C and Chen Z
Langmuir, 29(2), 610-619 (2012)
Lingju Meng et al.
Nanoscale, 9(3), 1257-1262 (2017-01-06)
Functional electronic devices integrated on flexible substrates are of great interest in both academia and industry for their potential applications in wearable technologies. Recently, there have been an increasing number of investigations on developing new materials for flexible strain sensors

Articles

Mesoporous materials, such as aerogels, offer advantages for practical hydrogen storage. They have large surface areas, open porosity, small pore sizes, and the ability to coat the surface with one or more compounds.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service