689882
O-(2-Aminoethyl)-O′-[2-(biotinylamino)ethyl]octaethylene glycol
≥95% (oligomer uniformity)
Synonym(s):
Biotin-PEG amine (n = 8)
About This Item
Recommended Products
Quality Level
Assay
≥95% (oligomer uniformity)
form
powder
mol wt
average Mn 700
reaction suitability
reagent type: cross-linking reagent
Ω-end
amine
α-end
biotin
storage temp.
−20°C
SMILES string
NCCOCCOCCOCCOCCOCCOCCOCCOCCOCCNC(=O)CCCC[C@@H]1SC[C@@H]2NC(=O)N[C@H]12
InChI
1S/C30H58N4O11S/c31-5-7-37-9-11-39-13-15-41-17-19-43-21-23-45-24-22-44-20-18-42-16-14-40-12-10-38-8-6-32-28(35)4-2-1-3-27-29-26(25-46-27)33-30(36)34-29/h26-27,29H,1-25,31H2,(H,32,35)(H2,33,34,36)/t26-,27-,29-/m0/s1
InChI key
UHIKHSATVJGWOI-YCVJPRETSA-N
Related Categories
Packaging
Storage Class Code
11 - Combustible Solids
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Personal Protective Equipment
Regulatory Listings
Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.
JAN Code
689882-BULK:
689882-100MG:
689882-VAR:
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Articles
Progress in biotechnology fields such as tissue engineering and drug delivery is accompanied by an increasing demand for diverse functional biomaterials. One class of biomaterials that has been the subject of intense research interest is hydrogels, because they closely mimic the natural environment of cells, both chemically and physically and therefore can be used as support to grow cells. This article specifically discusses poly(ethylene glycol) (PEG) hydrogels, which are good for biological applications because they do not generally elicit an immune response. PEGs offer a readily available, easy to modify polymer for widespread use in hydrogel fabrication, including 2D and 3D scaffold for tissue culture. The degradable linkages also enable a variety of applications for release of therapeutic agents.
Designing biomaterial scaffolds mimicking complex living tissue structures is crucial for tissue engineering and regenerative medicine advancements.
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service