Skip to Content
Merck
All Photos(2)

Key Documents

Safety Information

725137

Sigma-Aldrich

Lithium manganese dioxide

greener alternative

powder, <1 μm particle size, ≥98% trace metals basis

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
LiMnO2
CAS Number:
Molecular Weight:
93.88
UNSPSC Code:
26111700
PubChem Substance ID:
NACRES:
NA.23

grade

battery grade

Quality Level

Assay

≥98% trace metals basis

form

powder

mol wt

Mw 93.88 g/mol

composition

LiMnO2

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

particle size

<1 μm

mp

400 °C

density

4.1 g/cm3 (lit.)

application(s)

battery manufacturing

greener alternative category

SMILES string

[Li+].O=[Mn-]=O

InChI

1S/Li.Mn.2O/q+1;-1;;

InChI key

HSDMUHSXXGFNMK-UHFFFAOYSA-N

General description

Lithium manganese dioxide is a class of electrode material that can be used in the fabrication of lithium-ion batteries. Lithium-ion batteries consist of anode, cathode, and electrolyte with a charge-discharge cycle. These materials enable the formation of greener and sustainable batteries for electrical energy storage.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Find details here.

Application

  • Safety of a continuous glucose monitoring device during hyperbaric exposure.: This study examines the safety and performance of a continuous glucose monitoring device under hyperbaric conditions, highlighting the reliability and durability of Lithium manganese dioxide batteries in medical applications (Bliss et al., 2020).
  • The 6 volt battery for implantable cardioverter/defibrillators.: This paper discusses the use of Lithium manganese dioxide batteries in implantable cardioverter/defibrillators, emphasizing their high energy density and long life, making them ideal for critical medical devices (Drews et al., 1998).

Features and Benefits

Cathode Materials for High Energy Density Li Ion Rechargeable Batteries; sub-micron particle size results in increased surface area of electrodes. The composition listed allows the preparation of battery electrodes with enhanced performance and durability.

Li-Batteries, material for electrodes design and manufacturing

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

PRTR

Class I Designated Chemical Substances

ISHL Indicated Name

Substances Subject to be Indicated Names

ISHL Notified Names

Substances Subject to be Notified Names

JAN Code

725137-25G:4548173924335
725137-BULK:
725137-VAR:


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Shukla, Nitya Nath; Prasad, Rajendra
Journal of Physics and Chemistry of Solids, 67, 1731-1731 (2006)
Idemoto, Yasushi; Konno, Yuji; Ui, Koichi; Koura, Nobuyuki
Electrochemistry, 73, 823-823 (2005)
Wang, Miaojun; Navrotsky, Alexandra
Journal of Solid State Chemistry, 178, 1230-1230 (2005)
Hagh, N. Marandian; Amatucci, G. G.
Electrochemical Society Transactions, 11 (29), 21-26 (2008)
The Li-ion rechargeable battery: a perspective
Goodenough JB and Park K
Journal of the American Chemical Society, 135(4), 1167-1176 (2013)

Articles

Nanomaterials for Energy Storage in Lithium-ion Battery Applications

HEVs address rising fuel costs and emissions concerns, utilizing battery packs alongside internal combustion engines for enhanced performance.

Professor Qiao's review explores stable microstructures for lithium metal fluoride batteries, advancing energy storage technologies.

Solid oxide fuel cells and electrolyzers show potential for chemical-to-electrical energy conversion, despite early development stages.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service