Skip to Content
Merck
All Photos(1)

Key Documents

Safety Information

767506

Sigma-Aldrich

Titanium

sputtering target, diam. × thickness 2.00 in. × 0.25 in., 99.995% trace metals basis

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
Ti
CAS Number:
Molecular Weight:
47.87
EC Number:
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

99.995% trace metals basis

form

solid

autoignition temp.

860 °F

reaction suitability

core: titanium

resistivity

42.0 μΩ-cm, 20°C

diam. × thickness

2.00 in. × 0.25 in.

bp

3287 °C (lit.)

mp

1660 °C (lit.)

density

4.5 g/mL at 25 °C (lit.)

SMILES string

[Ti]

InChI

1S/Ti

InChI key

RTAQQCXQSZGOHL-UHFFFAOYSA-N

Application

Sputtering is a process whereby atoms are ejected from a solid target material due to bombardment of the target by energetic particles. The extreme miniaturization of components in the semiconductor and electronics industry requires high purity sputtering targets for thin film deposition.

Storage Class Code

11 - Combustible Solids

WGK

nwg

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

ISHL Indicated Name

Substances Subject to be Indicated Names

ISHL Notified Names

Substances Subject to be Notified Names

JAN Code

767506-1EA:
767506-VAR:
767506-BULK:


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Kostantinidis, S.; et al.
The European Physical Journal - Applied Physics, 56, 24002/1-24002/1 (2011)
Helmersson; U.; et al.
Thin Solid Films, 513, 1-1 (2006)
A Kurbad et al.
International journal of computerized dentistry, 16(2), 125-141 (2013-08-13)
This article presents two novel options for lithium-disilicate restorations supported by single-tooth implants. By using a Ti-Base connector, hybrid abutments and hybrid abutment crowns can be fabricated for different implant systems. The latter option in particular is an interesting new
Jinho Shin et al.
Journal of nanoscience and nanotechnology, 13(8), 5807-5810 (2013-07-26)
In this study, hydroxyapatite (HA) was coated on anodized titanium (Ti) surfaces through radio frequency magnetron sputtering in order to improve biological response of the titanium surface. All the samples were blasted with resorbable blasting media (RBM). RBM-blasted Ti surface
R Khataee et al.
Journal of nanoscience and nanotechnology, 13(7), 5109-5114 (2013-08-02)
In the present study, self-cleaning and mechanical properties of white Portland cement by addition of commercial available TiO2 nanoparticles with the average particle size of 80 nm were investigated. X-ray diffraction (XRD), transmission electron microscopy (TEM) and BET were used

Articles

Nanocomposite Coatings with Tunable Properties Prepared by Atomic Layer Deposition

Spintronics offer breakthroughs over conventional memory/logic devices with lower power, leakage, saturation, and complexity.

The properties of many devices are limited by the intrinsic properties of the materials that compose them.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service