Skip to Content
Merck
All Photos(2)

Key Documents

Safety Information

774251

Sigma-Aldrich

Ethylene sulfite

greener alternative

≥99.0%

Synonym(s):

1,3,2-Dioxathiolan-2-oxide, Cyclic ethylene sulfite, ES, Glycol sulfite

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C2H4O3S
CAS Number:
Molecular Weight:
108.12
Beilstein:
1237109
EC Number:
MDL number:
UNSPSC Code:
26111700
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

≥99.0%

form

liquid

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

refractive index

n20/D 1.445 (lit.)
n20/D 1.447

bp

159.1 °C (lit.)

density

1.426 g/mL at 25 °C (lit.)
1.433 g/mL at 25 °C

application(s)

battery manufacturing

greener alternative category

SMILES string

O=S1OCCO1

InChI

1S/C2H4O3S/c3-6-4-1-2-5-6/h1-2H2

InChI key

WDXYVJKNSMILOQ-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Find details here.

Application

Ethylene sulfite (ES) is a sulfur analog of ethylene carbonate (EC), which can be used as an electrolytic additive for the formation of liquid electrolytes. These electrolytes are useful in the fabrication of lithium-ion batteries.
Ethylene sulfite is used as a film forming and high temperature additive for electrolytes in lithium ion batteries. It improves decomposition resistance of electrolyte.

Storage Class Code

10 - Combustible liquids

WGK

WGK 3

Flash Point(F)

197.1 °F

Flash Point(C)

91.7 °C


Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

FSL

Group 4: Flammable liquids
Type 3 petroleums
Hazardous rank III
Water insoluble liquid

JAN Code

774251-BULK:
774251-25G:
774251-VAR:


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Surface film formation on a graphite negative electrode in lithium-ion batteries: atomic force microscopy study on the effects of film-forming additives in propylene carbonate solutions
Jeong S, et al.
Langmuir, 17(26), 8281-8286 (2001)
Ethylene Sulfite as Electrolyte Additive for Lithium-Ion Cells with Graphitic Anodes
Wrodnigg GH, et al.
Journal of the Electrochemical Society, 146(2), 470-472 (1999)
The reductive mechanism of ethylene sulfite as solid electrolyte interphase film-forming additive for lithium ion battery
Xing L, et al.
Journal of Power Sources, 196(16), 7044-7047 (2011)
Joseph P O'Shea et al.
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 96, 207-216 (2015-07-29)
Novel formulations that overcome the solubility limitations of poorly water soluble drugs (PWSD) are becoming ever more critical to a drug development process inundated with these compounds. There is a clear need for developing bio-enabling formulation approaches to improve oral
Dharmendra K Yadav et al.
AAPS PharmSciTech, 16(4), 855-864 (2015-01-15)
The objective of this study was to develop novel docetaxel phospholipid nanoparticles (NDPNs) for intravenous administration. Modified solvent diffusion-evaporation method was adopted in the NDPN preparation. Central composite design (CCD) was employed in the optimization of the critical formulation factor

Articles

Experts discuss challenges and production processes of nickel-rich layered oxide cathode materials in energy storage systems.

Li-ion batteries are currently the focus of numerous research efforts with applications designed to reduce carbon-based emissions and improve energy storage capabilities.

Lithium-ion batteries offer high energy density and cyclic performance for portable electronic devices.

The critical technical challenges associated with the commercialization of electric vehicle batteries include cost, performance, abuse tolerance, and lifespan.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service