Skip to Content
Merck
All Photos(4)

Key Documents

Safety Information

776246

Sigma-Aldrich

SPhos Pd G3

97%

Synonym(s):

(2-Dicyclohexylphosphino-2′,6′-dimethoxybiphenyl) [2-(2′-amino-1,1′-biphenyl)]palladium(II) methanesulfonate

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C39H48NO5PPdS
CAS Number:
Molecular Weight:
780.26
MDL number:
UNSPSC Code:
12161600
PubChem Substance ID:
NACRES:
NA.22

Quality Level

Assay

97%

form

solid

feature

generation 3

reaction suitability

core: palladium
reaction type: Buchwald-Hartwig Cross Coupling Reaction
reaction type: Heck Reaction
reaction type: Hiyama Coupling
reaction type: Negishi Coupling
reaction type: Sonogashira Coupling
reaction type: Stille Coupling
reaction type: Suzuki-Miyaura Coupling
reagent type: catalyst
reaction type: Cross Couplings

mp

197-214 °C

functional group

phosphine

storage temp.

2-8°C

SMILES string

CS(=O)(=O)O[Pd]c1ccccc1-c2ccccc2N.COc3cccc(OC)c3-c4ccccc4P(C5CCCCC5)C6CCCCC6

InChI

1S/C26H35O2P.C12H10N.CH4O3S.Pd/c1-27-23-17-11-18-24(28-2)26(23)22-16-9-10-19-25(22)29(20-12-5-3-6-13-20)21-14-7-4-8-15-21;13-12-9-5-4-8-11(12)10-6-2-1-3-7-10;1-5(2,3)4;/h9-11,16-21H,3-8,12-15H2,1-2H3;1-6,8-9H,13H2;1H3,(H,2,3,4);/q;;;+1/p-1

InChI key

SCWODMZBSVVMRH-UHFFFAOYSA-M

General description

SPhos Pd G3 is a third-generation (G3) Buchwald precatalyst that can be used in cross-coupling reactions for the formation of C-C, C-N, C-O, C-F, C-CF3, and C-S bonds. It is air-, moisture-, and thermally stable and is highly soluble in a wide range of common organic solvents. Some of its unique features include lower catalyst loadings, shorter reaction time, efficient formation of the active catalytic species, and accurate control of ligand: palladium ratio.

Application

Pd catalyst for cross-coupling
SPhos Pd G3 can be used as a precatalyst in the Suzuki–Miyaura catalyst–transfer polymerization (SCTP) reaction of a wide spectrum of monomers, including electron-rich to electron-deficient (hetero)arenes. It is also used as a catalyst in the formation of a Csp3–Csp2 bond between sterically hindered boronic hemiester and quinone diazide, which is the key intermediate step in the enantioselective synthesis of azamerone.

related product

Product No.
Description
Pricing

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

ISHL Indicated Name

Substances Subject to be Indicated Names

ISHL Notified Names

Substances Subject to be Notified Names


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Matthew L Landry et al.
Journal of the American Chemical Society, 141(7), 2867-2871 (2019-02-02)
A concise and selective synthesis of the dichlorinated meroterpenoid azamerone is described. The paucity of tactics for the synthesis of natural-product-relevant chiral organochlorides motivated the development of unique strategies for accessing these motifs in enantioenriched forms. The route features a
Jaeho Lee et al.
Journal of the American Chemical Society, 143(29), 11180-11190 (2021-07-16)
Catalyst-transfer polymerization has revolutionized the field of polymer synthesis due to its living character, but for a given catalyst system, the polymer scope is rather narrow. Herein we report a highly efficient Suzuki-Miyaura catalyst-transfer polymerization (SCTP) that covers a wide

Articles

G3 and G4 Buchwald palladium precatalysts are the newest air, moisture, and thermally stable crossing-coupling complexes used in bond formation for their versatility and high reactivity.

Related Content

Explore reliable, premium grade catalysis materials for your pharma or industrial project. Specialty chemicals and formulations are available in bulk quantities and volumes from a few grams to multi-metric tons with complete documentation to simplify your leap from development to commercialization.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service