Skip to Content
Merck
All Photos(1)

Key Documents

Safety Information

793353

Sigma-Aldrich

Tungsten oxide (WO3-x) nanoparticle ink

Synonym(s):

Avantama P-10, Nanograde P-10, Tungsten oxide nanoparticle dispersion, Tungsten oxide suspension, WO3 dispersion, WO3 ink

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
WO3-x
UNSPSC Code:
12352103
NACRES:
NA.23

form

dispersion

Quality Level

concentration

2.5 wt. % in 2-propanol

particle size

<50 nm (BET)

density

0.7992 g/mL at 25 °C

General description

This WO3-x nanoparticle ink is for slot-dye, spin-coating and doctor blading for the use as hole transport layer in printed electronics. Tungsten oxide nanoparticle ink is a hole-selective interface layer ink based on a colloidal suspension of tungsten oxide (WO3) nanoparticles in isopropanol. The average size of WO3 particle is optimized around 12-16 nm. Tungsten oxide nanoparticle exhibits high work function, processability and easy layer formation on hydrophilic as well as hydrophobic substrates.This WO3-x nanoparticle ink is universally applicable in normal and inverted architecture solar cells.
Annealing temperature <100°C.

Application

WO3 nanoparticle ink can be applied in OPV cells as hole extraction layer (HEL) materials. Tungsten oxide nanoparticle ink can be mixed with PEDOT:PSS formulations in order to fine tune electronic and morphological dry layer properties (e.g. conductivity, surface roughness or layer porosity).

Other Notes

Prior to application: Ultrasonicate and (optionally) filter through 0.45 μm PTFE filter
Working conditions: Application and film drying under nitrogen (or low humidity)
Post-treatment: Annealing of deposited WO3-x films at 80°C - 120°C

Legal Information

Product of Avantama Ltd.

Pictograms

FlameExclamation mark

Signal Word

Danger

Hazard Statements

Precautionary Statements

Hazard Classifications

Eye Irrit. 2 - Flam. Liq. 2 - STOT SE 3

Target Organs

Central nervous system

Storage Class Code

3 - Flammable liquids

WGK

WGK 1

Flash Point(F)

53.6 °F - closed cup

Flash Point(C)

12 °C - closed cup


Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

FSL

Group 4: Flammable liquids
Alcohols
Hazardous rank II

ISHL Indicated Name

Substances Subject to be Indicated Names

ISHL Notified Names

Substances Subject to be Notified Names

JAN Code

793353-BULK:
793353-5ML:4548173339856
793353-VAR:
793353-25ML:4548173339849
793353-50ML:4548173361079


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Inverted structure organic photovoltaic devices employing a low temperature solution processed WO3 anode buffer layer
Christoph J. Brabec; et al.
Organic Electronics, 13(11), 2479-2484 (2012)
High Fill Factor Polymer Solar Cells Incorporating a Low Temperature Solution Processed WO3 Hole Extraction Layer
Christoph J. Brabec; et al.
Advanced Energy Materials, 2, 1433-1438 (2012)
Lin Zhou et al.
Scientific reports, 9(1), 8778-8778 (2019-06-21)
This paper presents perovskite solar cells employed with WO3 nanoparticles embedded carbon top electrode. WO3 nanoparticles works as an inorganic hole-transport material (HTM) to promote the hole-extraction in the perovskite/carbon interface as revealed by efficiency, electrochemical impedance and external quantum
A universal method to form the equivalent ohmic contact for efficient solution-processed organic tandem solar cells
Journal of Material Chemistry A, 2, 14896?14902-14896?14902 (2014)
Chun-Chao Chen et al.
Advanced materials (Deerfield Beach, Fla.), 26(32), 5670-5677 (2014-07-22)
Tandem solar cells have the potential to improve photon conversion efficiencies (PCEs) beyond the limits of single-junction devices. In this study, a triple-junction tandem design is demonstrated by employing three distinct organic donor materials having bandgap energies ranging from 1.4

Articles

Find advantages of inorganic interface layer inks for organic electronic & other applications.

Professors Tokito and Takeda share design principles and optimization protocols for organic electronic devices, focusing on flexibility and low cost.

Progress in solution-processed functional materials leads to thin-film optoelectronic devices for industrial and consumer electronics.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service