Skip to Content
Merck
All Photos(1)

Key Documents

Safety Information

28-1320

Sigma-Aldrich

Silver nitrate

SAJ first grade, ≥99.8%

Synonym(s):

Nitric acid silver(I) salt

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
AgNO3
CAS Number:
Molecular Weight:
169.87
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:

grade

SAJ first grade

vapor density

5.8 (vs air)

Assay

≥99.8%

form

solid

availability

available only in Japan

mp

212 °C (dec.) (lit.)

storage temp.

15-25°C

SMILES string

[O-][N+]([O-])=O.[Ag+]

InChI

1S/Ag.NO3/c;2-1(3)4/q+1;-1

InChI key

SQGYOTSLMSWVJD-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application


  • In Situ Fabrication of Silver Nanoparticle-Decorated Polymeric Vesicles for Antibacterial Applications.: This article discusses the use of silver nitrate in the synthesis of polymeric vesicles decorated with silver nanoparticles, aimed at enhancing antibacterial properties. This approach represents a significant advancement in the development of targeted antibacterial therapies, showcasing the role of silver nitrate in the field of medical materials science (Zhang et al., 2024).

  • Impact of Metal Salt Oxidants and Preparation Technology on Efficacy of Bacterial Cellulose/Polypyrrole Flexible Conductive Fiber Membranes.: This study leverages the oxidizing properties of silver nitrate to enhance the conductivity and flexibility of polymeric fiber membranes. The findings contribute to advancements in wearable electronics and sensors, demonstrating the versatility of silver nitrate in engineering applications (Tao et al., 2024).

  • Control of the Hydroquinone/Benzoquinone Redox State in High-Mobility Semiconducting Conjugated Coordination Polymers.: This paper presents the use of silver nitrate in controlling redox states in semiconducting polymers, highlighting its crucial role in the development of high-performance electronic materials. The research underscores the application of silver nitrate in enhancing the electrical properties of novel polymeric materials (Huang et al., 2024).

Signal Word

Danger

Hazard Statements

Hazard Classifications

Aquatic Acute 1 - Aquatic Chronic 1 - Eye Dam. 1 - Met. Corr. 1 - Ox. Sol. 2 - Repr. 1B - Skin Corr. 1A

Storage Class Code

5.1B - Oxidizing hazardous materials

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

PDSCL

Deleterious substance

PRTR

Class I Designated Chemical Substances

FSL

Group 1: Oxidizing solids
Nitrates
Hazardous rank I
1st oxidizing solid

ISHL Indicated Name

Substances Subject to be Indicated Names

ISHL Notified Names

Substances Subject to be Notified Names

JAN Code

28-1320-2-25G-J:
28-1320-5-500G-J:


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Irina Blinova et al.
Environmental science and pollution research international, 20(5), 3456-3463 (2012-11-13)
Although silver nanoparticles (NPs) are increasingly used in various consumer products and produced in industrial scale, information on harmful effects of nanosilver to environmentally relevant organisms is still scarce. This paper studies the adverse effects of silver NPs to two
Patrycja Bober et al.
Biomacromolecules, 15(10), 3655-3663 (2014-08-28)
In this work, flexible and free-standing composite films of nanofibrillated cellulose/polypyrrole (NFC/PPy) and NFC/PPy-silver nanoparticles (NFC/PPy-Ag) have been synthesized for the first time via in situ one-step chemical polymerization and applied in potential biomedical applications. Incorporation of NFC into PPy
Ali Hebeish et al.
Carbohydrate polymers, 92(1), 407-413 (2012-12-12)
Innovative CMC-based hydrogels with great potentials for usage in medical area were principally synthesized as per two strategies .The first involved reaction of epichlorohydrin in alkaline medium containing silver nitrate to yield silver nano-particles (AgNPs)-loaded CMC hydrogel. While CMC acted
Liming Wang et al.
ACS nano, 9(6), 6532-6547 (2015-05-23)
To predict potential medical value or toxicity of nanoparticles (NPs), it is necessary to understand the chemical transformation during intracellular processes of NPs. However, it is a grand challenge to capture a high-resolution image of metallic NPs in a single
Gownolla Malegowd Raghavendra et al.
Carbohydrate polymers, 93(2), 553-560 (2013-03-19)
Natural carbohydrates (polysaccharides): gum acacia (GA) and gaur gum (GG) were employed in dilute solutions: 0.3%, 0.5% and 0.7% (w/v), as effective reductants for the green synthesis of silver nanoparticles (AgNPs) from AgNO3. The formed AgNPs were impregnated into cellulose

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service