Skip to Content
Merck
All Photos(1)

Key Documents

Safety Information

940089

Sigma-Aldrich

RuPhos Pd G2 Chembeads

new

Synonym(s):

2nd Generation RuPhos Precatalyst ChemBeads, Chloro(2-dicyclohexylphosphino-2′,6′-diisopropoxy-1,1′-biphenyl)[2-(2′-amino-1,1′-biphenyl)]palladium(II) ChemBeads, RuPhos-Pd-G2 ChemBeads

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C42H53ClNO2PPd
CAS Number:
Molecular Weight:
776.72
UNSPSC Code:
12352100

form

solid

Quality Level

composition

, 4-6 wt. % (loading)

reaction suitability

reagent type: catalyst

SMILES string

CC(OC(C=CC=C1OC(C)C)=C1C(C=CC=C2)=C2P(C3CCCCC3)C4CCCCC4)C.Cl[Pd]5C6=CC=CC=C6C7=CC=CC=C7N5

InChI

InChI=1S/C30H43O2P.C12H10N.ClH.Pd/c1-22(2)31-27-19-13-20-28(32-23(3)4)30(27)26-18-11-12-21-29(26)33(24-14-7-5-8-15-24)25-16-9-6-10-17-25;13-12-9-5-4-8-11(12)10-6-2-1-3-7-10;;/h11-13,18-25H,5-10,14-17H2,1-4H3;1-6,8-9H,13H2;1H;/q;;;+1/p-1

InChI key

VPDRBFBKNSFRSS-UHFFFAOYSA-M

General description

The ChemBeads product of RuPhos Pd G2, a second generation (G2) precatalyst in which phenethylamine based backbone of the (G1) complex is substituted with a biphenyl-based ligand. Product participates in various palladium catalyzed cross-coupling reactions, C-C, C-N, and C-O bond formation reactions and Suzuki-Miyaura coupling reactions. It generates active Pd catalyst at room temperature in the presence of weak phosphate or carbonate bases.. Loaded on glass beads for use in high-throughput expermentation (HTE).

Application

RuPhos Pd G2 may be employed as precatalyst in the preparation of fluoro-substituted diazatetracenes and diazapentacenes, via Pd-catalyzed aryl amination reaction. (26248605)

ChemBeads are chemical coated glass beads. ChemBeads offer improved flowability and chemical uniformity perfect for automated solid dispensing and high-throughput experimentation. The method of creating ChemBeads uses no other chemicals or surfactants allowing the user to accurately dispense sub-milligram amounts of chemical.

For general uses, product is also available in powdered form (753246)

related product

Product No.
Description
Pricing

Storage Class Code

13 - Non Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

JAN Code

940089-VAR:
940089-1G:
940089-BULK:


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

A J DeAngelis et al.
The Journal of organic chemistry, 80(13), 6794-6813 (2015-06-03)
Two new classes of highly active yet air- and moisture-stable π-R-allylpalladium complexes containing bulky biaryl- and bipyrazolylphosphines with extremely broad ligand scope have been developed. Neutral π-allylpalladium complexes incorporated a range of biaryl/bipyrazolylphosphine ligands, while extremely bulky ligands were accommodated
Jonas Schwaben et al.
Chemistry (Weinheim an der Bergstrasse, Germany), 21(39), 13758-13771 (2015-08-08)
Non-symmetrical 6,13-disubstituted pentacenes bearing trifluoromethyl and aryl substituents have been synthesized starting from pentacenequinone. Diazapentacenes with a variety of fluorine substituents were prepared either via a Hartwig-Buchwald aryl amination route or by a SNAr strategy. As a result of a
Bryan T Ingoglia et al.
Tetrahedron, 75(32), 4199-4211 (2020-01-04)
Over the past three decades, Pd-catalyzed cross-coupling reactions have become a mainstay of organic synthesis. In particular, catalysts derived from biaryl monophosphines have shown wide utility in forming C-N bonds under mild reaction conditions. This work summarizes a variety of
Noah P Tu et al.
Angewandte Chemie (International ed. in English), 58(24), 7987-7991 (2019-03-21)
Technologies that enable rapid screening of diverse reaction conditions are of critical importance to methodology development and reaction optimization, especially when molecules of high complexity and scarcity are involved. The lack of a general solid dispensing method for chemical reagents
Ana L Aguirre et al.
Chemistry (Weinheim an der Bergstrasse, Germany), 27(51), 12981-12986 (2021-07-08)
High-throughput experimentation (HTE) methods are central to modern medicinal chemistry. While many HTE approaches to C-N and Csp2 -Csp2 bonds are available, options for Csp2 -Csp3 bonds are limited. We report here how the adaptation of nickel-catalyzed cross-electrophile coupling of

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service