Skip to Content
Merck
All Photos(1)

Key Documents

Safety Information

BCR058

Continuous cast copper (O)

BCR®, certified reference material, rod

Synonym(s):

Copper

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
Cu
CAS Number:
Molecular Weight:
63.55
EC Number:
MDL number:
UNSPSC Code:
41116107
PubChem Substance ID:
NACRES:
NA.24

grade

certified reference material

Agency

BCR®

form

rod

manufacturer/tradename

JRC

resistivity

1.673 μΩ-cm, 20°C

bp

2567 °C (lit.)

mp

1083.4 °C (lit.)

density

8.94 g/mL at 25 °C (lit.)

format

matrix material

SMILES string

[Cu]

InChI

1S/Cu

InChI key

RYGMFSIKBFXOCR-UHFFFAOYSA-N

Analysis Note

For more information please see:
BCR058

Legal Information

BCR is a registered trademark of European Commission

Storage Class Code

4.1B - Flammable solid hazardous materials

WGK

WGK 2

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

ISHL Notified Names

Substances Subject to be Notified Names

JAN Code

BCR058-17G:


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Xuejiao Tong et al.
Journal of environmental sciences (China), 25(4), 652-658 (2013-08-09)
The removal efficiency of copper (Cu(II)) from an actual acidic electroplating effluent by biochars generated from canola, rice, soybean and peanut straws was investigated. The biochars simultaneously removed Cu(II) from the effluent, mainly through the mechanisms of adsorption and precipitation
Marius Andruh
Chimia, 67(6), 383-387 (2013-08-16)
The node-and-spacer approach is widely employed in crystal engineering to construct coordination polymers. It consists of self-assembly processes involving mononuclear cationic species and exo-dentate ligands. We enlarged this strategy using preformed homo- and heterometallic complexes as nodes. The presence of
Ping Ning et al.
Journal of environmental sciences (China), 25(4), 808-814 (2013-08-09)
Metal (Cu, Co, or Zn) loaded ZSM-5 and Y zeolite adsorbents were prepared for the adsorption of hydrogen cyanide (HCN) toxic gas. The results showed that the HCN breakthrough capacity was enhanced significantly when zeolites were loaded with Cu. The
Gabi Drochioiu et al.
European journal of mass spectrometry (Chichester, England), 19(1), 71-75 (2013-07-12)
The interaction between copper ions and gamma-L-glutamyl-L-cysteinyl-glycine [glutathione (GSH)] molecules may lead to the formation of the physiologically occurring Cu[I)-[GSH]2 and Cu(II)-GSSG complexes. Since glutathione depletion in neurons and aberrant copper metabolism have been implicated in several neurodegenerative disorders, we
Ren Zhang et al.
Chimia, 67(6), 393-396 (2013-08-16)
Three new R-isophthalic acid-based (R = H or Br) coordination polymers have been designed and synthesized. By changing the N-containing ligand in the system, we are able to tune the dimensionality of coordination polymers from one-dimension (1D) to two-dimensions (2D)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service