Skip to Content
Merck
All Photos(1)

Key Documents

Safety Information

SHC016V

Sigma-Aldrich

MISSION® pLKO.1-puro Non-Target shRNA Control Transduction Particles

Targets no known genes from any species

Synonym(s):

MISSION®, MISSION® Control Transduction Particles, negative control, negative shRNA control, non-target control, non-target shRNA, non-target shRNA control, shRNA control

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
41106609
NACRES:
NA.51

Quality Level

product line

MISSION®

concentration

≥1x106 VP/ml (via p24 assay)

shipped in

dry ice

storage temp.

−70°C

Looking for similar products? Visit Product Comparison Guide

General description

The MISSION® pLKO.1-puro Non-Target shRNA Control Transduction Particles contain an shRNA insert that does not target any known genes from any species, making it useful as a negative control in experiments using the MISSION® shRNA library clones. This allows one to examine the effect of transduction of a short-hairpin on gene expression and interpret the knockdown effect seen with shRNA clones. Ampicillin and puromycin antibiotic resistance genes provide selection in bacterial or mammalian cells respectively. In addition, self-inactivating replication incompetent viral particles can be produced in packaging cells (HEK293T) by co-transfection with compatible packaging plasmids. The Non-Target shRNA Control Transduction Particles are provided as 200 μL at 1 x 106 TU/mL via p24 assay.
When conducting experiments using MISSION® shRNA clones, the proper controls should be a key element of your experimental design to allow for accurate interpretation of knockdown results. The MISSION Control Transduction Particles are a critical positive control to monitor transduction efficiency.
To see more application data, protocols, vector maps visit sigma.com/shrna.

Application

MISSION® pLKO.1-puro Non-Target shRNA Control Transduction Particles have been used to generate 3T3-L1 (pre-adipocytes) control cell lines.

Analysis Note

To see more application data, protocols, vector maps visit sigma.com/shrna.

Legal Information

MISSION is a registered trademark of Merck KGaA, Darmstadt, Germany

Storage Class Code

12 - Non Combustible Liquids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

Cartagena Act

Cartagena Act Listed

JAN Code

SHC016VN-1EA:
SHC016V-1EA:
SHC016V-1EA-PW:


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

SIRT6 Depletion Suppresses Tumor Growth by Promoting Cellular Senescence Induced by DNA Damage in HCC.
Lee N
PLoS ONE, 11(11), e0165835-e0165835 (2016)
Hedgehog associated to microparticles inhibits adipocyte differentiation via a non-canonical pathway.
Fleury A
Scientific Reports, 6 (2016)
Namgyu Lee et al.
PloS one, 11(11), e0165835-e0165835 (2016-11-09)
The role of Sirtuin 6 (SIRT6) as a tumor suppressor or oncogene in liver cancer remains controversial. Thus, we identified the specific role of SIRT6 in the progression of hepatocellular carcinoma (HCC). SIRT6 expression was significantly higher in HCC cell
Jessica B Casaletto et al.
Proceedings of the National Academy of Sciences of the United States of America, 116(15), 7533-7542 (2019-03-23)
Activation of the Met receptor tyrosine kinase, either by its ligand, hepatocyte growth factor (HGF), or via ligand-independent mechanisms, such as MET amplification or receptor overexpression, has been implicated in driving tumor proliferation, metastasis, and resistance to therapy. Clinical development
Natsumi Suzuki et al.
Oncogene, 39(10), 2202-2211 (2019-12-13)
p53 is one of the most important tumor suppressor genes, and the exploration of p53-target genes is important for elucidation of its functional mechanisms. In this study, we identified Armadillo Repeat gene deleted in Velo-Cardio-Facial syndrome (ARVCF) as a direct

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service