Skip to Content
Merck
All Photos(1)

Key Documents

Safety Information

SML1243

Sigma-Aldrich

Pyr10

≥98% (HPLC)

Synonym(s):

N-[4-[3,5-Bis(trifluoromethyl)-1H-pyrazol-1-yl]phenyl]-4-methyl-benzenesulfonamide

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C18H13F6N3O2S
CAS Number:
Molecular Weight:
449.37
UNSPSC Code:
12352200
NACRES:
NA.77

Quality Level

Assay

≥98% (HPLC)

form

powder

color

white to beige

solubility

DMSO: 20 mg/mL, clear

storage temp.

2-8°C

Biochem/physiol Actions

Pyr10 is a novel, selective inhibitor of the transient receptor potential channel TRPC3. Pyr10 blocks carbachol-induced calcium entry into TRPC3-transfected HEK293 cells (IC50 = 0.72 μM), with significantly lower activity against STIM1/Orai1 mediated release of calcium from endoplasmic reticulum (store operated calcium entry) in BRL-2H3 cells (IC50 = 13.08 μM).

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

JAN Code

SML1243-25MG:
SML1243-VAR:
SML1243-IP:
SML1243-BULK:
SML1243-5MG:


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Samuel Shin et al.
International immunopharmacology, 117, 109853-109853 (2023-02-25)
Renal tubular epithelial cells are capable of synthesizing interleukins (IL) in response to a variety of proinflammatory cytokines. Moreover, elevated urinary levels of IL have been shown in patients with various forms of nephritic diseases. However, the underlying intracellular signaling
Samuel Shin et al.
Cellular signalling, 67, 109484-109484 (2019-11-27)
Oxidative stress and reactive oxygen species (ROS) generation can be influenced by G-protein coupled receptor (GPCR)-mediated regulation of intracellular Ca2+ ([Ca2+]i) signaling. ROS production are much higher in proximal tubular (PT) cells; in addition, the lack of antioxidants enhances the

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service