Skip to Content
Merck
All Photos(1)

Key Documents

Safety Information

SML1697

Sigma-Aldrich

OGG1 Inhibitor O8

≥98% (HPLC)

Synonym(s):

3,4-Dichloro-benzo[b]thiophene-2-carboxylic acid hydrazide

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C9H6Cl2N2OS
CAS Number:
Molecular Weight:
261.13
MDL number:
UNSPSC Code:
12352200
PubChem Substance ID:
NACRES:
NA.77

Quality Level

Assay

≥98% (HPLC)

form

powder

color

white to beige

solubility

DMSO: 5 mg/mL, clear

storage temp.

2-8°C

SMILES string

ClC1=C(C(NN)=O)SC2=CC=CC(Cl)=C21

InChI

1S/C9H6Cl2N2OS/c10-4-2-1-3-5-6(4)7(11)8(15-5)9(14)13-12/h1-3H,12H2,(H,13,14)

InChI key

HSSHUDKWJRJKPV-UHFFFAOYSA-N

General description

Inhibition of 8-oxoguanine DNA glycosylase-1 (OGG1) can be used in monotherapy or in combination therapy to treat some types of cancer.

Biochem/physiol Actions

OGG1 Inhibitor O8 is a potent inhibitor of 8-Oxoguanine DNA Glycosylase-1 (OGG1), part of the DNA base excision repair (BER) pathway that is becoming a drug target for cancer therapy. OGG1 Inhibitor O8 has an IC50 value of 220 nM and >100-fold selectivity for OGG1 relative to several other DNA repair glycosylases. O8 acts through the inhibition of Schiff base formation during OGG1 catalysis. It does not prevent DNA binding of OGG1 to a 7,8-dihydro-8-oxoguanine (8-oxo-Gua)-containing substrate.

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

JAN Code

SML1697-BULK:
SML1697-25MG:
SML1697-VAR:
SML1697-5MG:


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Nathan Donley et al.
ACS chemical biology, 10(10), 2334-2343 (2015-07-29)
The DNA base excision repair (BER) pathway, which utilizes DNA glycosylases to initiate repair of specific DNA lesions, is the major pathway for the repair of DNA damage induced by oxidation, alkylation, and deamination. Early results from clinical trials suggest
Mingxin Chang et al.
Frontiers in pharmacology, 11, 610205-610205 (2021-02-02)
Background: Oncogenic transformation is associated with elevated oxidative stress that promotes tumor progression but also renders cancer cells vulnerable to further oxidative insult. Agents that stimulate ROS generation or suppress antioxidant systems can drive oxidative pressure to toxic levels selectively
Yaoyao Xue et al.
Frontiers in immunology, 14, 1161160-1161160 (2023-08-21)
Interferons (IFNs) are secreted cytokines with the ability to activate expression of IFN stimulated genes that increase resistance of cells to virus infections. Activated transcription factors in conjunction with chromatin remodelers induce epigenetic changes that reprogram IFN responses. Unexpectedly, 8-oxoguanine
Xu Zheng et al.
Journal of innate immunity, 1-22 (2022-05-06)
The primary cause of morbidity and mortality from infection with respiratory syncytial virus (RSV) is the excessive innate immune response(s) (IIR) in which reactive oxygen species (ROS) play key role(s). However, the mechanisms for these processes are not fully understood.
Wenjing Hao et al.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 34(6), 7427-7441 (2020-05-08)
8-Oxoguanine DNA glycosylase1 (OGG1)-initiated base excision repair (BER) is the primary pathway to remove the pre-mutagenic 8-oxo-7,8-dihydroguanine (8-oxoG) from DNA. Recent studies documented 8-oxoG serves as an epigenetic-like mark and OGG1 modulates gene expression in oxidatively stressed cells. For this

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service