Skip to Content
Merck
All Photos(3)

Key Documents

323489

Sigma-Aldrich

Silver acetylacetonate

98%

Synonym(s):

2,4-Pentanedione silver derivative, Ag(acac)

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
[CH3COCH=C(O-)CH3]Ag
CAS Number:
Molecular Weight:
206.98
EC Number:
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

Assay

98%

form

solid
solid

reaction suitability

core: silver

mp

100 °C (dec.) (lit.)

storage temp.

2-8°C

SMILES string

CC(=O)\C=C(\C)O[Ag]

InChI

1S/C5H8O2.Ag/c1-4(6)3-5(2)7;/h3,6H,1-2H3;/q;+1/p-1/b4-3-;

InChI key

CHACQUSVOVNARW-LNKPDPKZSA-M

General description

Silver acetylacenate is a metalorganic precursor with moderate solubility in polymer and organic solvents. It can be annealed to produce polymer incorporated silver nanoparticles (AgNPs).

Application

Ag(acac) can be used in the preparation of silver based catalysts and nanoparticles for potential applications in electronics, optoelectronics, and surface enhanced Raman spectroscopy.

Pictograms

Health hazardExclamation mark

Signal Word

Warning

Hazard Classifications

Acute Tox. 4 Dermal - Acute Tox. 4 Inhalation - Acute Tox. 4 Oral - Carc. 2 - Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Shixia Zhan et al.
Nanomaterials (Basel, Switzerland), 9(9) (2019-09-07)
The ternary nanocomposites Fe3O4/Ag/polyoxometalates (Fe3O4/Ag/POMs) with core-shell-core nanostructure were synthesized by coating [Cu(C6H6N2O)2(H2O)]H2[Cu(C6H6N2O)2(P2Mo5O23)]·4H2O polyoxometalates on the surface of Fe3O4/Ag (core-shell) nanoparticles. The transmission electron microscopy/high resolution transmission electron microscopy (HR-TEM) and X-ray powder diffraction (XRD) analyses show that the Fe3O4/Ag/POMs
Preparation of silver nanoparticles via reduction of a highly CO2-soluble hydrocarbon-based metal precursor
Fan X, et al.
Industrial & Engineering Chemistry Research, 45(10), 3343-3347 (2006)
Electrochemical synthesis of silver nanoparticles
Starowicz M, et al.
Electrochemical Communications, 8(2), 227-230 (2006)
Supported silver catalysts prepared by deposition in aqueous solution of Ag nanoparticles obtained through a photochemical approach
Scire S, et al.
Applied Catalysis A: General, 367(1-2), 138-145 (2009)
Optical limiters based on silver nanoparticles embedded in amorphous polystyrene
Carotenuto G, et al.
Science and Engineering of Composite Materials, 18(3), 187-190 (2011)

Articles

Copper metal deposition processes are an essential tool for depositing interconnects used in microelectronic applications, giving group 11 (coinage metals: Copper, Silver, and Gold) an important place in atomic layer deposition (ALD) process development.

The diversity of applications and nanostructured materials accessible using ultrasonic spray methods are highlighted in this article.

Ultrasonic spray pyrolysis produces scalable nanomaterials like metal oxides and quantum dots for diverse applications.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service