Skip to Content
Merck
All Photos(1)

Key Documents

376779

Sigma-Aldrich

2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane

97%

Synonym(s):

(2,3,5,6-Tetrafluoro-2,5-cyclohexadiene-1,4-diylidene)dimalononitrile, 7,7,8,8-Tetracyano-2,3,5,6-tetrafluoroquinodimethane, F4TCNQ

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C12F4N4
CAS Number:
Molecular Weight:
276.15
Beilstein:
2157887
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

97%

form

solid

mp

285-290 °C (lit.)

SMILES string

FC1=C(F)C(\C(F)=C(F)/C1=C(\C#N)C#N)=C(\C#N)C#N

InChI

1S/C12F4N4/c13-9-7(5(1-17)2-18)10(14)12(16)8(11(9)15)6(3-19)4-20

InChI key

IXHWGNYCZPISET-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) is a dopant used in the fabrication of organic semiconductors. It can tune the electronic properties as its lowest unoccupied molecular orbital is at a desirable energy level required to oxidize a wide range of semiconductors.
2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) are p-type molecules, used as a strong acceptor dopant , it generates free holes.

Application

F4-TCNQ can be doped with poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) to form a hole transport material (HTL), which can be used to achieve an energy efficiency of 16% for a semi-transparent perovskite solar cell. It can be used as a p-type dopant to form a blended composite film with poly(3-hexylthiophene) (P3HT) having enhanced charge mobility, which can be potentially useful in organic photovoltaics.
F4-TCNQ is the p-type dopant for hole-only devices and field effect transistors with organic hole transport layers (HTL). It is used in the preparation of a bilayer structure of F4-TCNQ and pentacene to study improved thermoelectric performance of organic thin films.

Pictograms

Skull and crossbones

Signal Word

Danger

Hazard Statements

Hazard Classifications

Acute Tox. 3 Dermal - Acute Tox. 3 Inhalation - Acute Tox. 3 Oral

Storage Class Code

6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

A simple method for controllable solution doping of complete polymer field-effect transistors
Ingram IDV, et al.
Applied Physics Letters, 104(15), 581-581 (2014)
The chemical and structural origin of efficient p-type doping in P3HT
Duong DT, et al.
Organic Electronics, 14(5), 1330-1336 (2013)
David Kiefer et al.
Nature materials, 18(2), 149-155 (2019-01-16)
Molecular doping is a crucial tool for controlling the charge-carrier concentration in organic semiconductors. Each dopant molecule is commonly thought to give rise to only one polaron, leading to a maximum of one donor:acceptor charge-transfer complex and hence an ionization
Enhancing hole transports and generating hole traps by doping organic hole-transport layers with p-type molecules of 2, 3, 5, 6-tetrafluoro-7, 7, 8, 8-tetracyanoquinodimethane
Matsushima T and Adachi C
Thin Solid Films, 517(2), 874-877 (2008)
Yingying Liang et al.
Advanced science (Weinheim, Baden-Wurttemberg, Germany), 7(3), 1902456-1902456 (2020-02-12)
Three isostructural donor-acceptor complexes DPTTA-F X

Articles

Highly reducing or oxidizing species enhance organic semiconductor conductivity by reducing charge-carrier injection barriers.

Fabrication procedure of organic field effect transistor device using a soluble pentacene precursor.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service