Skip to Content
Merck
All Photos(1)

Key Documents

50971

Sigma-Aldrich

Trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl)amide

≥95.0%

Synonym(s):

Tetradecyltrihexylphosphonium bis(trifluoromethylsulfonyl)amide

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
[CH3(CH2)5]3P[N(SO2CF3)2](CH2)13CH3
CAS Number:
Molecular Weight:
764.00
MDL number:
UNSPSC Code:
12352100
PubChem Substance ID:
NACRES:
NA.22

Quality Level

Assay

≥95.0%

impurities

≤1.0 water (Karl Fischer)

density

1.07 g/mL at 20 °C (lit.)

functional group

fluoro
phosphine

SMILES string

FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F.CCCCCCCCCCCCCC[P+](CCCCCC)(CCCCCC)CCCCCC

InChI

1S/C32H68P.C2F6NO4S2/c1-5-9-13-17-18-19-20-21-22-23-24-28-32-33(29-25-14-10-6-2,30-26-15-11-7-3)31-27-16-12-8-4;3-1(4,5)14(10,11)9-15(12,13)2(6,7)8/h5-32H2,1-4H3;/q+1;-1

InChI key

HYNYWFRJHNNLJA-UHFFFAOYSA-N

Related Categories

General description

Trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl)amide [P6,6,6,14][Ntf2] is an ionic liquid generally used in biosensors electrodeposition, and synthetic chemistry applications.

Application

[P6,6,6,14][Ntf2] can be used in:
  • The electrodeposition of nano and microcrystalline metals for electrochemical applications.
  • The synthesis of amino acid ionic liquid functionalized graphene (AAIL-GR) applicable as a biosensor.
  • The investigation of interactions between ionic liquids and fluorinated alkanes.
  • The synthesis of pure rutile and anatase phases of nanocrystalline TiO2.

Other Notes

Ionic liquid for copolymerisation

Pictograms

FlameCorrosion

Signal Word

Danger

Hazard Statements

Hazard Classifications

Eye Dam. 1 - Flam. Liq. 3 - Skin Corr. 1B

Storage Class Code

3 - Flammable liquids

WGK

WGK 3

Flash Point(F)

125.6 °F

Flash Point(C)

52 °C

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Synthesis and Characterization of Rutile and Anatase in Air-and Water-Stable Ionic Liquids with and without Isopropanol as a Cosolvent.
Al Zoubi M, et al.
Australian Journal of Chemistry, 61(9), 704-711 (2008)
Electrochemical biosensing platform based on amino acid ionic liquid functionalized graphene for ultrasensitive biosensing applications
Lu X, at al.
Biosensors And Bioelectronics, 62(39), 134-139 (2014)
Xianbo Lu et al.
Biosensors & bioelectronics, 62, 134-139 (2014-07-06)
In this study, a facile non-covalent method was developed for preparing water-soluble graphene with excellent electronic conductivity. Room temperature ionic liquids (ILs) with high ionic conductivity were used for the non-covalent surface functionalization of graphene through π-π stacking interactions. Compared
Interactions of fluorinated gases with ionic liquids: Solubility of CF4, C2F6, and C3F8 in trihexyltetradecylphosphonium bis (trifluoromethylsulfonyl) amide.
Pison L, et al.
The Journal of Physical Chemistry B, 112(39), 12394-12400 (2008)
Nathalie M Rocher et al.
Chemistry (Weinheim an der Bergstrasse, Germany), 15(14), 3435-3447 (2009-01-10)
Electrodeposition of aluminium is possible from solutions of AlCl(3) dissolved in the 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide (C(4)mpyrNTf(2)) ionic liquid. However, electrodeposition is dependant on the AlCl(3) concentration as it only occurs at concentrations >1.6 mol L(-1). At these relatively high AlCl(3) concentrations

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service