Skip to Content
Merck
All Photos(2)

Key Documents

517011

Sigma-Aldrich

Strontium titanate

nanopowder, <100 nm particle size, 99% trace metals basis

Synonym(s):

Strontium metatitanate, Strontium titanium trioxide

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
SrTiO3
CAS Number:
Molecular Weight:
183.49
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

99% trace metals basis

form

nanopowder

dielectric constant

300

reaction suitability

reagent type: catalyst
core: titanium

particle size

<100 nm

mp

2060 °C (lit.)

density

4.81 g/mL at 25 °C (lit.)

SMILES string

[Sr++].[O-][Ti]([O-])=O

InChI

1S/3O.Sr.Ti/q;2*-1;+2;

InChI key

VEALVRVVWBQVSL-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Strontium titanate (SrTiO3) is a crystalline oxide material known for its perovskite structure. It exhibits a high dielectric constant and is considered a promising material for various electronic applications. Strontium titanate has a density of 4.81 g/mL at 25 °C (lit.) and a melting point of about 2060°C. This compound is widely used in the production of capacitors, insulators, and piezoelectric devices due to its excellent dielectric properties. Additionally, strontium titanate is employed in the fabrication of thin films for advanced electronic devices, including transistors and sensors. Its unique optical properties also make it suitable for applications in photonics and optoelectronics.

Application

  • Photoinduced electronic and ionic effects in strontium titanate: Focuses on the interaction of strontium titanate with ultraviolet radiation, investigating photoionic processes and photochromic effects, which are crucial for developing optoelectronic devices (M Siebenhofer et al., 2021).
  • The emerging career of strontium titanates in photocatalytic applications: Reviews the role of strontium titanates in photocatalytic applications, particularly emphasizing their utility in environmental remediation processes (N Sharma, K Hernadi, 2022).
  • Recent advances on carrier and exciton self-trapping in strontium titanate: Discusses the self-trapping of carriers and excitons in strontium titanate, providing insights into its electronic properties and implications for semiconductor technologies (ML Crespillo et al., 2019).

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 1

1 of 1

Chemically driven nanoscopic magnetic phase separation at the SrTiO(3) (001)/La(1-x) Sr(x) CoO(3) interface.
Maria A Torija et al.
Advanced materials (Deerfield Beach, Fla.), 23(24), 2711-2715 (2011-04-21)
L Avilés Félix et al.
Nanotechnology, 23(49), 495715-495715 (2012-11-17)
The transport properties of ultra-thin SrTiO(3) (STO) layers grown over YBa(2)Cu(3)O(7) electrodes were studied by conductive atomic force microscopy at the nano-scale. A very good control of the barrier thickness was achieved during the deposition process. A phenomenological approach was
Archana Pandey et al.
ACS nano, 7(1), 117-125 (2012-12-04)
Novel PMMA-STO-CNT matrices were created by opened-tip vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) with conformal coatings of strontium titanate (STO) and poly(methyl methacrylate) (PMMA). Emission threshold of 0.8 V/μm was demonstrated, about 5-fold lower than that of the as-grown VA-MWCNTs.
Qiang Xu et al.
Ultramicroscopy, 111(7), 912-919 (2011-06-15)
The knowledge of the valence electron distribution is essential for understanding the properties of materials. However this information is difficult to obtain from HREM images because it is easily obscured by the large scattering contribution of core electrons and by
Ralf Moos et al.
Sensors (Basel, Switzerland), 11(4), 3439-3465 (2011-12-14)
Resistive oxygen sensors are an inexpensive alternative to the classical potentiometric zirconia oxygen sensor, especially for use in harsh environments and at temperatures of several hundred °C or even higher. This device-oriented paper gives a historical overview on the development

Articles

Synthesis, Properties, and Applications of Perovskite-Phase Metal Oxide Nanostructures

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service