Skip to Content
Merck
All Photos(2)

Key Documents

677418

Sigma-Aldrich

Hydroxyapatite

nanopowder, <200 nm particle size (BET), ≥97%, synthetic

Synonym(s):

Calcium phosphate tribasic, Calcium hydroxyphosphate, HAp, Hydroxylapatite, Tribasic calcium phosphate

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
[Ca5(OH)(PO4)3]x
CAS Number:
Molecular Weight:
502.31
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

≥97%

form

nanopowder
solid

surface area

>9.4 m2/g

particle size

<200 nm (BET)

mp

1100 °C (lit.)

SMILES string

[Ca++].[Ca++].[Ca++].[Ca++].O[Ca+].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O

InChI

1S/5Ca.3H3O4P.H2O/c;;;;;3*1-5(2,3)4;/h;;;;;3*(H3,1,2,3,4);1H2/q5*+2;;;;/p-10

InChI key

XYJRXVWERLGGKC-UHFFFAOYSA-D

Looking for similar products? Visit Product Comparison Guide

General description

Hydroxyapatite(HA) belongs to the family of Ca apatite which resembles natural bone in both structure and chemical composition. It can be prepared by various techniques such as chemical precipitation, hydrothermal, electrospinning, and self-propagating combustion. It is widely used as an implant material for bone regeneration, a drug carrier, and a gene delivery system due to its bioactive and biocompatible nature.

Application

Nanoscale hydroxyapatite particles can be used to prepare bone tissue engineering materials due to their slow biodegradability in situ, good osteoconductive and osteoinductive capabilities.

Poly (sodium 4-styrene sulfonate)-modified hydroxyapatite nanoparticles can be used as a drug carrier for vancomycin. Hydroxyapatite nanoparticles control the release of antibiotics after the implantation of a scaffold in the body.

Porous hydroxyapatite microspheres exhibit a high adsorptive capacity for heavy metals and can be used for the treatment of heavy metal contaminated water.

Features and Benefits

  • Bioactive and biocompatible
  • Good mechanical strength
  • Porous structure
  • Osteoconductive and osteointegrative properties

Legal Information

Product of Engi-Mat Co.

Storage Class Code

13 - Non Combustible Solids

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Furqan A Shah
Scientific reports, 10(1), 16662-16662 (2020-10-09)
Various compositional parameters are derived using intensity ratios and integral area ratios of different spectral peaks and bands in the Raman spectrum of bone. The [Formula: see text]1-, [Formula: see text]2-,[Formula: see text]3-, [Formula: see text]4 PO43-, and [Formula: see
Michiko Sato et al.
Biomaterials, 27(11), 2358-2369 (2005-12-13)
In order to improve orthopedic implant performance, the objective of this in vitro study was to synthesize nanocrystalline hydroxyapatite (HA) powders to coat titanium. HA was synthesized through a wet chemical process. The precipitated powders were either sintered at 1100
Deepak Bushan Raina et al.
Acta orthopaedica, 91(2), 126-132 (2019-11-05)
Background and purpose - Targeted delivery of drugs is important to achieve efficient local concentrations and reduce systemic side effects. We hypothesized that locally implanted synthetic hydroxyapatite (HA) particles can act as a recruiting moiety for systemically administered drugs, leading
Sang-Soo Kim et al.
Biomaterials, 27(8), 1399-1409 (2005-09-20)
Biodegradable polymer/bioceramic composite scaffolds can overcome the limitations of conventional ceramic bone substitutes such as brittleness and difficulty in shaping. However, conventional methods for fabricating polymer/bioceramic composite scaffolds often use organic solvents (e.g., the solvent casting and particulate leaching (SC/PL)
Hydroxyapatite nanoparticles: a review of preparation methodologies
Ferraz MP, et al.
Journal of Applied Biomaterials & Biomechanics : JABB, 2(2), 74-80 (2004)

Articles

Nanoparticles can be used for applications such as growing cells for tissue engineering, nanocomposites used in orthopedics, and miniaturized sensors for DNA, pathogens, and chemicals.

Innovation in dental restorative materials is driven by the need for biocompatible and natural-appearing restoration alternatives. Conventional dental materials like amalgam and composite resins have inherent disadvantages.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service