Skip to Content
Merck
All Photos(3)

Key Documents

F6129

Sigma-Aldrich

Iron(III) citrate

technical grade

Synonym(s):

Ferric citrate, Iron(III) citrate, Iron(III) citrate hydrate

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C6H5FeO7
CAS Number:
Molecular Weight:
244.94
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23
grade:
technical grade
form:
powder

grade

technical grade

Quality Level

form

powder

composition

Fe, 16.5-18.5%

technique(s)

cell culture | mammalian: suitable

application(s)

battery manufacturing

SMILES string

OC12CC(=O)O[Fe](OC(=O)C1)OC2=O

InChI

1S/C6H8O7.Fe/c7-3(8)1-6(13,5(11)12)2-4(9)10;/h13H,1-2H2,(H,7,8)(H,9,10)(H,11,12);/q;+3/p-3

InChI key

NPFOYSMITVOQOS-UHFFFAOYSA-K

Looking for similar products? Visit Product Comparison Guide

General description

Iron(III) citrate technical grade is a brown to dark orangepowder. It is soluble in water, but insoluble in most organics includingalcohols. The powder is sensitive to light; like many iron carboxylates, bluelight photo-reduces iron(III) citrate, forming the Fe2+ ion andconcomitantly oxidizing the carboxyl group to yield carbon dioxide. Iron(III)citrate thermally decomposes to α-Fe2O3 at 460 °C.

Application

Iron(III) citrate is a synthetic precursor for iron-containing compounds. It is commonly used to prepare Fe3O4 nanoparticles or Fe3O4-nanocomposites by hydrothermal methods and Fe2O3 materials by thermal decomposition and sol-gel processing. Iron(III) citrate is well-suited to sol-gel processing because of its high solubility in water and low solubility inorganic phases. Consequently, iron(III) citrate is an important precursor in the synthesis of iron-doped and iron-containing metal oxides studied for lithium-ion battery cathodes.

It can also be used in the degradation of tetracycline for the treatment of polluted water.

Storage Class Code

11 - Combustible Solids

WGK

WGK 2

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

P Senthil Kumar et al.
ACS omega, 3(3), 3036-3044 (2018-07-20)
Pristine trivanadate (LiV3O8) and doped lithium trivanadate (LiV3-x M x O8, M = Zn/Co/Fe/Sn/Ti/Zr/Nb/Mo, x = 0.01/0.05/0.1 M) compounds were prepared by a simple reflux method in the presence of the polymer, Pluronic P123, as the chelating agent. For comparison
Jianguo Guan et al.
Chemical communications (Cambridge, England), 46(35), 6605-6607 (2010-08-18)
We present a simple and effective heterogeneous contraction method to fabricate hollow spheres with controllable interior structures (ranging from solid, simple hollow to core-in-hollow-wall, double-wall hollow and core-in-double-hollow-wall spheres) by a non-equilibrium heat-treatment process of gel precursors with a high
Tatsuya Fukushima et al.
Proceedings of the National Academy of Sciences of the United States of America, 109(42), 16829-16834 (2012-10-03)
Citrate is a common biomolecule that chelates Fe(III). Many bacteria and plants use ferric citrate to fulfill their nutritional requirement for iron. Only the Escherichia coli ferric citrate outer-membrane transport protein FecA has been characterized; little is known about other
Akio Iida et al.
American journal of nephrology, 37(4), 346-358 (2013-04-04)
Ferric citrate hydrate (JTT-751) is being developed as a treatment for hyperphosphatemia in chronic kidney disease patients, and shows serum phosphorus-reducing effects on hyperphosphatemia in hemodialysis patients. We examined whether JTT-751 could reduce phosphorus absorption in normal rats and prevent
Miriam A Rosenbaum et al.
PloS one, 7(2), e30827-e30827 (2012-02-10)
Shewanella oneidensis is a target of extensive research in the fields of bioelectrochemical systems and bioremediation because of its versatile metabolic capabilities, especially with regard to respiration with extracellular electron acceptors. The physiological activity of S. oneidensis to respire at

Articles

Plasmonic nanoparticles have unique optical properties that can be tailored to suit a variety of applications in the biotechnology1–8 and electronics9–16 industries.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service