Skip to Content
Merck
All Photos(2)

Key Documents

202991

Sigma-Aldrich

Cerium(III) nitrate hexahydrate

99.999% trace metals basis

Synonym(s):

Cerium trinitrate, Cerous nitrate hexahydrate, Nitric acid cerium salt

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
Ce(NO3)3 · 6H2O
CAS Number:
Molecular Weight:
434.22
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

Assay

99.999% trace metals basis

form

crystals and lumps

reaction suitability

reagent type: catalyst
core: cerium

impurities

≤15.0 ppm Trace Metal Analysis

SMILES string

[Ce+3].[H]O[H].[H]O[H].[H]O[H].[H]O[H].[H]O[H].[H]O[H].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O

InChI

1S/Ce.3NO3.6H2O/c;3*2-1(3)4;;;;;;/h;;;;6*1H2/q+3;3*-1;;;;;;

InChI key

QQZMWMKOWKGPQY-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Cerium (III) nitrate hexahydrate is a widely used source of cerium in materials science. It is a white-to-yellow crystalline salt that is hygroscopic and air-sensitive. It is highly soluble in water, alcohol, and acetone, although solutions can appear slightly hazy. Like many trivalent metal nitrates, cerium (III) nitrate hexahydrate melts at a low temperature (57 °C)and thermally decomposes at low temperatures too, beginning at 190 °C and proceeding rapidly at 280 °C with complete decomposition to cerium oxide at 390-400 °C.

Application

Cerium (III) nitrate hexahydrate is widely used as a source of cerium, especially in the synthesis of micro- or nano-structured ceria (cerium oxide). Because of its high solubility and low decomposition temperature, cerium (III) nitrate hexahydrate is an ideal reagent for hydrothermal reactions, sol-gel processing, and co-precipitation and calcination reactions. Our cerium (III) nitrate hexahydrate 99.999% is designed for applications that demand high-purity cerium with low contaminants of other trace metals and rare earth metals. For example, high-purity cerium nitrate is applicable in studies using cerium (III) nitrate hexahydrate used to dope catalysts, such as recent efforts to boost water splitting using Ce-doped layered double hydroxides . It is also applicable in studies using cerium (III)nitrate hexahydrate to build a ceria support for single-atom catalysts, such as nickel-doped ceria for the hydrogenation of acetylene and platinum-doped ceria for carbon monoxide oxidation. Our high-purity cerium (III) nitrate hexahydrate is also in the solid-state synthesis of cerium-doped phosphors like Ca2YHf2Al3O12 where energy transfer from Ce3+ to other rare earth ions plays a major role in the efficiency and breadth of excitations.

Pictograms

CorrosionEnvironment

Signal Word

Danger

Hazard Statements

Hazard Classifications

Aquatic Acute 1 - Aquatic Chronic 1 - Eye Dam. 1

Storage Class Code

5.1B - Oxidizing hazardous materials

WGK

WGK 2

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

John Jones et al.
Science (New York, N.Y.), 353(6295), 150-154 (2016-07-09)
Catalysts based on single atoms of scarce precious metals can lead to more efficient use through enhanced reactivity and selectivity. However, single atoms on catalyst supports can be mobile and aggregate into nanoparticles when heated at elevated temperatures. High temperatures
Huajie Xu et al.
ACS applied materials & interfaces, 10(7), 6336-6345 (2018-02-01)
Developing convenient doping to build highly active oxygen evolution reaction (OER) electrocatalysts is a practical process for solving the energy crisis. Herein, a facile and low-cost in situ self-assembly strategy for preparing a Ce-doped NiFe-LDH nanosheets/nanocarbon (denoted as NiFeCe-LDH/CNT, LDH
Christopher Riley et al.
Journal of the American Chemical Society, 140(40), 12964-12973 (2018-09-18)
Since the discovery that ceria is an active catalyst for selective hydrogenation of alkynes, there has been much debate on the catalytic mechanism. In this work, we propose, based on density functional theory (DFT) investigations, a mechanism that involves the
Highly efficient near-UV-excitable Ca2YHf2Al3O12:Ce3+,Tb3+ green-emitting garnet phosphors with potential application in high color rendering warm-white LEDs.
Want S, et al.
Journal of Material Chemistry C, 8, 4408-4420 (2020)
Fabrication of layered double hydroxide microcapsules mediated by cerium doping in metal?organic frameworks for boosting water splitting.
Huajie Xu, et al.
Energy & Environmental Science, 13, 2949-2956 (2020)

Articles

Lanthanide ions in spectral conversion enhance solar cell efficiency via photon conversion.

Rare earth elements are vital in everyday life worldwide: catalysts in cars, colors in screens, magnets in electronics. Essential for modern living.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service