추천 제품
Grade
sublimed grade
Quality Level
분석
≥99% (HPLC)
손실
0.5% TGA, >330°C (weight loss)
solubility
chloroform: soluble
dichloromethane: soluble
toluene: soluble
λmax
287 nm±5 nm in dichloromethane
373 nm±5 nm in dichloromethane
형광
λem 514 nm±10 nm in dichloromethane
오비탈 에너지
HOMO 5.6 eV
LUMO 3.0 eV
유사한 제품을 찾으십니까? 방문 제품 비교 안내
애플리케이션
Tris[2-(p-tolyl)pyridine]iridium(III), also known as Ir(mppy)3, is a solution-processable small molecule, used as green phosphorescent dopant in highly-efficient light emitting diode (LED) displays, both perovskite and organic LEDs.
Tris[2-(p-tolyl)pyridine]iridium(III) is widely utilized as a phosphorescent emitter in OLED devices, particularly in green or yellow organic light-emitting diodes (OLEDs). It can be used in R&D studies for the development of advanced display technologies, including flat-panel displays and organic electroluminescent (OEL) displays. It is suitable in studies such as solid-state lighting including white OLEDs (WOLEDs) and organic light-emitting transistors (OLETs). It has been studied as a sensitizer in dye-sensitized solar cells (DSSCs), as a component in hybrid perovskite solar cells. It can be used in the research area of chemical sensor applications.
Storage Class Code
11 - Combustible Solids
WGK
WGK 3
Flash Point (°F)
Not applicable
Flash Point (°C)
Not applicable
시험 성적서(COA)
제품의 로트/배치 번호를 입력하여 시험 성적서(COA)을 검색하십시오. 로트 및 배치 번호는 제품 라벨에 있는 ‘로트’ 또는 ‘배치’라는 용어 뒤에서 찾을 수 있습니다.
Highly efficient green single-emitting layer phosphorescent organic light-emitting diodes with an iridium(III) complex as a hole-type sensitizer
Journal of Material Chemistry C, 7, 2744-2750 (2019)
Organic Light-Emitting Diodes with 30% External Quantum Efficiency Based on a Horizontally Oriented Emitter
Advanced Functional Materials
, 23, 3896-3900 (2013)
Nature, 563(7732), 536-540 (2018-11-23)
Organic light-emitting diodes (OLEDs)1-5, quantum-dot-based LEDs6-10, perovskite-based LEDs11-13 and micro-LEDs14,15 have been championed to fabricate lightweight and flexible units for next-generation displays and active lighting. Although there are already some high-end commercial products based on OLEDs, costs must decrease whilst maintaining high
Nature, 562(7726), 245-248 (2018-10-12)
Metal halide perovskite materials are an emerging class of solution-processable semiconductors with considerable potential for use in optoelectronic devices1-3. For example, light-emitting diodes (LEDs) based on these materials could see application in flat-panel displays and solid-state lighting, owing to their
자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..
고객지원팀으로 연락바랍니다.