콘텐츠로 건너뛰기
Merck
모든 사진(1)

주요 문서

940348

Dichloro(p-cymene)ruthenium(II) dimer ChemBeads

new

동의어(들):

(p-Cymene)ruthenium(II) chloride dimer ChemBeads, Benzene-1-methyl-4-(1-methylethyl)-ruthenium complex ChemBeads

로그인조직 및 계약 가격 보기


About This Item

실험식(Hill 표기법):
C20H28Cl4Ru2
CAS Number:
Molecular Weight:
612.39
UNSPSC 코드:
12352100

형태

solid

Quality Level

구성

, 4-6 wt. % (loading)

반응 적합성

reagent type: catalyst

SMILES string

[Cl-][Ru+2]123456([Cl-][Ru+2]789%10%11([Cl-])([Cl-]1)[CH]=%12[CH]%11=C%10(C(C)C)[CH]9=[CH]8C%127C)[CH]=%13[CH]6=C5(C(C)C)[CH]4=[CH]3C%132C

InChI

InChI=1S/2C10H14.4ClH.2Ru/c2*1-8(2)10-6-4-9(3)5-7-10;;;;;;/h2*4-8H,1-3H3;4*1H;;/q;;;;;;2*+2/p-4

InChI key

LAXRNWSASWOFOT-UHFFFAOYSA-J

일반 설명

The ChemBeads product of the (p-Cymene)ruthenium(II) chloride dimer. Loaded at 5% wt. on glass beads for use in high-throughput expermentation (HTE).
Dichloro(p-cymene)ruthenium(II) dimer is commonly used as a ruthenium starting material, and has been used in:
- Bifunctional P-containing RuO2 catalysts prepared from surplus Ru coordination complexes applied to Zn/Air batteries.
- The synthesis of half-sandwich type platinum-group metal complexes of C-glucosaminyl azines.
- The C(sp2)-H bond functionalization along with concomitant (4+2) annulation of coumarin-3-carboxamide.
-The acceptor engineering of ruthenium metallocycles with high phototoxic indices for safer photodynamic therapy.

특징 및 장점

ChemBeads are chemical coated glass beads. ChemBeads offer improved flowability and chemical uniformity perfect for automated solid dispensing and high-throughput experimentation. The method of creating ChemBeads uses no other chemicals or surfactants allowing the user to accurately dispense sub-milligram amounts of chemical.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point (°F)

Not applicable

Flash Point (°C)

Not applicable


가장 최신 버전 중 하나를 선택하세요:

시험 성적서(COA)

Lot/Batch Number

적합한 버전을 찾을 수 없으신가요?

특정 버전이 필요한 경우 로트 번호나 배치 번호로 특정 인증서를 찾을 수 있습니다.

이 제품을 이미 가지고 계십니까?

문서 라이브러리에서 최근에 구매한 제품에 대한 문서를 찾아보세요.

문서 라이브러리 방문

Chonglu Li et al.
Chemical science, 14(11), 2901-2909 (2023-03-21)
Although metallacycle-based photosensitizers have attracted increasing attention in biomedicine, their clinical application has been hindered by their inherent dark toxicity and unsatisfactory phototherapeutic efficiency. Herein, we employ a π-expansion strategy for ruthenium acceptors to develop a series of Ru(ii) metallacycles
Anindita Sarkar et al.
Organic & biomolecular chemistry, 21(27), 5567-5586 (2023-06-26)
Efficacious protocols have been established to synthesize a structurally privileged Π-extended coumarin-fused pyridone nucleus by activating the vinylic C(sp2)-H bond of coumarin-3-carboxamide under the influence of inexpensive Ru(II)-metal. Here an N-methoxy carboxamide entity has been exploited as the chelating fragment
Sebastián Lorca et al.
Nanomaterials (Basel, Switzerland), 13(1) (2023-01-09)
An innovative synthetic route that involves the thermal treatment of selected Ru co-ordination complexes was used to prepare RuO2-based materials with catalytic activity for oxygen reduction (ORR) and oxygen evolution (OER) reactions. Extensive characterization confirmed the presence of Ru metal
Bryan T Ingoglia et al.
Tetrahedron, 75(32), 4199-4211 (2020-01-04)
Over the past three decades, Pd-catalyzed cross-coupling reactions have become a mainstay of organic synthesis. In particular, catalysts derived from biaryl monophosphines have shown wide utility in forming C-N bonds under mild reaction conditions. This work summarizes a variety of
Ana L Aguirre et al.
Chemistry (Weinheim an der Bergstrasse, Germany), 27(51), 12981-12986 (2021-07-08)
High-throughput experimentation (HTE) methods are central to modern medicinal chemistry. While many HTE approaches to C-N and Csp2 -Csp2 bonds are available, options for Csp2 -Csp3 bonds are limited. We report here how the adaptation of nickel-catalyzed cross-electrophile coupling of

자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..

고객지원팀으로 연락바랍니다.