コンテンツへスキップ
Merck
  • The role of DRP1 in ropivacaine-induced mitochondrial dysfunction and neurotoxicity.

The role of DRP1 in ropivacaine-induced mitochondrial dysfunction and neurotoxicity.

Artificial cells, nanomedicine, and biotechnology (2019-05-08)
Yan Chen, Lili Yan, Yan Zhang, Xianhui Yang
要旨

Ropivacaine is a commonly used local anaesthetic, but its side effects remain largely unknown. In the present study, we investigated the side effects of ropivacaine in human neuronal SH-5Y5Y cells. We show that 0.5% and 1% ropivacaine could cause fission-like mitochondrial morphological changes. Ropivacaine exclusively induces mitochondrial fission protein DRP1, generation of ROS and causes mitochondrial dysfunction including decreasing mitochondrial membrane potential, the activity of cytochrome C oxidase and ATP production. The side effects of ropivacaine appear to be dependent on DRP1 expression as silencing of DRP1 in neuronal cells abolishes ropivacaine-induced morphological changes and mitochondrial dysfunction. Silencing of DRP1 prevents ropivacaine-induced cellular LDH release and cell death. Moreover, DRP1-deficient neuronal cells are resistant to ropivacaine-induced apoptosis and silencing of DRP1 rescues the activity of cytochrome C oxidase and cellular ATP production. Collectively, our data indicate that imbalances in mitochondrial dynamics, mitochondrial dysfunction and cell death resulting from ropivacaine are all dependent on DRP1 expression. Our study provides valuable data to assess the safety of ropivacaine.

材料
製品番号
ブランド
製品内容

Roche
ハイピュアRNA組織キット, sufficient for 50 isolation(s), suitable for RT-PCR, suitable for Northern blotting