コンテンツへスキップ
Merck
  • Comparative effects of butyl benzyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP) on the aquatic larvae of Chironomus riparius based on gene expression assays related to the endocrine system, the stress response and ribosomes.

Comparative effects of butyl benzyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP) on the aquatic larvae of Chironomus riparius based on gene expression assays related to the endocrine system, the stress response and ribosomes.

Aquatic toxicology (Amsterdam, Netherlands) (2011-06-21)
Rosario Planelló, Oscar Herrero, José Luis Martínez-Guitarte, Gloria Morcillo
要旨

In this work, the effects of butyl benzyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP), two of the most extensively used phthalates, were studied in Chironomus riparius under acute short-term treatments, to compare their relative toxicities and identify genes sensitive to exposure. The ecotoxicity of these phthalates was assessed by analysis of the alterations in gene expression profiles of selected inducible and constitutive genes related to the endocrine system, the cellular stress response and the ribosomal machinery. Fourth instar larvae, a model system in aquatic toxicology, were experimentally exposed to five increasing concentrations (0.01, 0.1, 1, 10, and 100mg/L) of DEHP and BBP for 24h. Gene expression was analysed by the changes in levels of transcripts, using RT-PCR techniques with specific gene probes. The exposures to DEHP or BBP were able to rapidly induce the hsp70 gene in a concentration-dependent manner, whereas the cognate form hsc70 was not altered by either of these chemicals. Transcription of ribosomal RNA as a measure of cell viability, quantified by the levels of ITS2, was not affected by DEHP, but was slightly, yet significantly, downregulated by BBP at the highest concentrations tested. Finally, as these phthalates are classified as endocrine disruptor chemicals (EDCs), their potential effect on the ecdysone endocrine system was studied by analysing the two genes, EcR and usp, of the heterodimeric ecdysone receptor complex. It was found that BBP provoked the overexpression of the EcR gene, with significant increases from exposures of 0.1mg/L and above, while DEHP significantly decreased the activity of this gene at the highest concentration. These data are relevant as they show for the first time the ability of phthalates to interfere with endocrine marker genes in invertebrates, demonstrating their potential capacity to alter the ecdysone signalling pathway. Overall, the study clearly shows a differential gene-toxin interaction for these two phthalates and adds novel genomic tools for biomonitoring environmental xenobiotics in insects.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
フタル酸ベンジルブチル, 98%
Supelco
フタル酸ベンジルブチル, analytical standard
Supelco
フタル酸ベンジルブチル, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland