콘텐츠로 건너뛰기
Merck
  • Docking and pharmacodynamic studies on hGAT1 inhibition activity in the presence of selected neuronal and astrocytic inhibitors. Part I.

Docking and pharmacodynamic studies on hGAT1 inhibition activity in the presence of selected neuronal and astrocytic inhibitors. Part I.

Journal of molecular graphics & modelling (2018-09-17)
Alicja Nowaczyk, Łukasz Fijałkowski, Paula Zaręba, Kinga Sałat
초록

Inhibition of 4-aminobutanoic acid (GABA) uptake is a strategy for enhancing GABA transmission. The utility of this approach is demonstrated by the successful development of such agents for the treatment of epilepsy and pain. Existing reports on acute brain slice preparations indicate the intersecting of complementary channels and receptors sets between astrocytes and neurons cells. Thorough analysis of astroglial cells by means of molecular and functional studies demonstrated their active modulatory role in intercellular communication. The chemical interactions between sixteen GABA analogues and isoform of hGAT1 is outlined in the light of molecular docking results. In the in vivo part antinociceptive properties of racemic nipecotic acid, its R and S enantiomers and isonipecotic acid, each administered intraperitoneally at 3 fixed doses (10, 30 and 100 mg/kg), were assessed in a thermally-induced acute pain model i.e. the mouse hot plate test. Docking analyses provided complex binding energies, specific h-bond components, and h-bond properties, such as energies, distances and angles. In vivo tests revealed statistically significant antinociceptive properties of isonipecotic acid (10 and 30 mg/kg), R-nipecotic acid (30 and 100 mg/kg) and S-nipecotic acid (100 mg/kg) in mice. The docking data endorse the hypothesis of correlation between the strength of their chemical interactions with hGAT1 and analgesic action of studied compounds.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
Isonipecotic acid, 97%