콘텐츠로 건너뛰기
Merck
  • Activation of CaMKII and GluR1 by the PSD-95-GluN2B Coupling-Dependent Phosphorylation of GluN2B in the Spinal Cord in a Rat Model of Type-2 Diabetic Neuropathic Pain.

Activation of CaMKII and GluR1 by the PSD-95-GluN2B Coupling-Dependent Phosphorylation of GluN2B in the Spinal Cord in a Rat Model of Type-2 Diabetic Neuropathic Pain.

Journal of neuropathology and experimental neurology (2020-05-10)
Ya-Bing Zhu, Gai-Li Jia, Jun-Wu Wang, Xiu-Ying Ye, Jia-Hui Lu, Jia-Li Chen, Mao-Biao Zhang, Ci-Shan Xie, Yu-Jing Shen, Yuan-Xiang Tao, Jun Li, Hong Cao
초록

The mechanisms underlying type-2 diabetic neuropathic pain (DNP) are unclear. This study investigates the coupling of postsynaptic density-95 (PSD-95) to N-methyl-D-aspartate receptor subunit 2B (GluN2B), and the subsequent phosphorylation of GluN2B (Tyr1472-GluN2B) in the spinal cord in a rat model of type-2 DNP. Expression levels of PSD-95, Tyr1472-GluN2B, Ca2+/calmodulin-dependent protein kinase II (CaMKII) and its phosphorylated counterpart (Thr286-CaMKII), and α-amino-3-hydroxy-5-methyl-4-soxazole propionic acid receptor subtype 1 (GluR1) and its phosphorylated counterpart (Ser831-GluR1) were significantly increased versus controls in the spinal cord of type-2 DNP rats whereas the expression of total spinal GluN2B did not change. The intrathecal injection of Ro25-6981 (a specific antagonist of GluN2B) or Tat-NR2B9c (a mimetic peptide disrupting the interaction between PSD-95 and GluN2B) induced an antihyperalgesic effect and blocked the increased expression of Tyr1472-GluN2B, CaMKII, GluR1, Thr286-CaMKII, and Ser831-GluR1 in the spinal cords; the increase in spinal cord PSD-95 was not affected. These findings indicate that the PSD-95-GluN2B interaction may increase phosphorylation of GluN2B, and subsequently induce the expression of phosphorylation of CaMKII and GluR1 in the spinal cord of type-2 DNP rats. Targeting the interaction of PSD-95 with GluN2B may provide a new therapeutic strategy for type-2 DNP.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
Ro 25-6981 hydrochloride hydrate, ≥98% (HPLC), powder