콘텐츠로 건너뛰기
Merck
  • Opposing roles for SNAP23 in secretion in exocrine and endocrine pancreatic cells.

Opposing roles for SNAP23 in secretion in exocrine and endocrine pancreatic cells.

The Journal of cell biology (2016-10-05)
Masataka Kunii, Mica Ohara-Imaizumi, Noriko Takahashi, Masaki Kobayashi, Ryosuke Kawakami, Yasumitsu Kondoh, Takeshi Shimizu, Siro Simizu, Bangzhong Lin, Kazuto Nunomura, Kyota Aoyagi, Mitsuyo Ohno, Masaki Ohmuraya, Takashi Sato, Shin-Ichiro Yoshimura, Ken Sato, Reiko Harada, Yoon-Jeong Kim, Hiroyuki Osada, Tomomi Nemoto, Haruo Kasai, Tadahiro Kitamura, Shinya Nagamatsu, Akihiro Harada
초록

The membrane fusion of secretory granules with plasma membranes is crucial for the exocytosis of hormones and enzymes. Secretion disorders can cause various diseases such as diabetes or pancreatitis. Synaptosomal-associated protein 23 (SNAP23), a soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor (SNARE) molecule, is essential for secretory granule fusion in several cell lines. However, the in vivo functions of SNAP23 in endocrine and exocrine tissues remain unclear. In this study, we show opposing roles for SNAP23 in secretion in pancreatic exocrine and endocrine cells. The loss of SNAP23 in the exocrine and endocrine pancreas resulted in decreased and increased fusion of granules to the plasma membrane after stimulation, respectively. Furthermore, we identified a low molecular weight compound, MF286, that binds specifically to SNAP23 and promotes insulin secretion in mice. Our results demonstrate opposing roles for SNAP23 in the secretion mechanisms of the endocrine and exocrine pancreas and reveal that the SNAP23-binding compound MF286 may be a promising drug for diabetes treatment.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
Monoclonal Anti-Syntaxin antibody produced in mouse, clone HPC-1, ascites fluid
Sigma-Aldrich
Anti-GAPDH Mouse mAb (6C5), liquid, clone 6C5, Calbiochem®