Skip to Content
Merck
All Photos(1)

Key Documents

93711

Sigma-Aldrich

Atto 655

BioReagent, suitable for fluorescence, ≥85% (HPLC)

Sign Into View Organizational & Contract Pricing


About This Item

MDL number:
UNSPSC Code:
12352116
PubChem Substance ID:
NACRES:
NA.32

Pricing and availability is not currently available.

product line

BioReagent

Quality Level

assay

≥85% (HPLC)

form

powder

manufacturer/tradename

ATTO-TEC GmbH

transmittance

254 nm
655 nm

fluorescence

λex 655 nm; λem 680 nm in 0.1 M phosphate pH 7.0

λ

in ethanol (with 0.1% trifluoroacetic acid)

UV absorption

λ: 652-658 nm Amax

suitability

suitable for fluorescence

Looking for similar products? Visit Product Comparison Guide

Application

Atto labels are designed for highest sensitivity applications. A unique combination of advantages makes them highly favorable tools for all kinds of labeling applications. Some of their properties make them specifically interesting for single molecule detection. Atto labels are based on rigid structures and do not show any cis-trans-isomerization, which lowers the brightness of signals and leads to environment dependency, e.g., spectral shifts by conjugation.
Atto 655 shows a molar extinction of 110,000 and QY of 30% in water (50% in ethanol). Decay time is 1.9 ns.

Other Notes

New red absorbing fluorescent dye with best signal-to-noise ratio and long fluorescence life-time. Useful as a biophysical probe for binding interactions.[1]

Storage Class

11 - Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Gloves, type N95 (US)


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Volker Buschmann et al.
Bioconjugate chemistry, 14(1), 195-204 (2003-01-16)
The spectroscopic characteristics (absorption, emission, and fluorescence lifetime) of 13 commercially available red-absorbing fluorescent dyes were studied under a variety of conditions. The dyes included in this study are Alexa647, ATTO655, ATTO680, Bodipy630/650, Cy5, Cy5.5, DiD, DY-630, DY-635, DY-640, DY-650
Bengang Xing et al.
Chemistry (Weinheim an der Bergstrasse, Germany), 17(50), 14170-14177 (2011-11-16)
The molecular interactions of the glycopeptide antibiotic vancomycin (Van) with bacterial cell wall analogues N,N'-diacetyl-L-Lys-D-Ala-D-Ala (Ac(2) KdAdA) and N,N'-diacetyl-L-Lys-D-Ala-D-Lac (Ac(2) KdAdL) were investigated in neat water, phosphate buffer and HEPES buffer by using fluorescence correlation spectroscopy (FCS) and molecular dynamics
Sridharan Rajagopalan et al.
Nucleic acids research, 39(6), 2294-2303 (2010-11-26)
The state of oligomerization of the tumor suppressor p53 is an important factor in its various biological functions. It has a well-defined tetramerization domain, and the protein exists as monomers, dimers and tetramers in equilibrium. The dissociation constants between oligomeric
Zhixing Chen et al.
Journal of the American Chemical Society, 134(33), 13692-13699 (2012-08-10)
Chemical tags are now viable alternatives to fluorescent proteins for labeling proteins in living cells with organic fluorophores that have improved brightness and other specialized properties. Recently, we successfully rendered our TMP-tag covalent with a proximity-induced reaction between the protein
John G Bruno et al.
Combinatorial chemistry & high throughput screening, 14(7), 622-630 (2011-05-04)
Several different approaches have been taken to development of homogeneous fluorescent aptamer assays including end-labeled beacons and signaling aptamers which are intrinsically quenched by nucleotides. Two new strategies dubbed "intrachain" and "competitive" FRET-aptamer assays are summarized in this review. Intrachain

Articles

Fluorescence lifetime measurement is advantageous over intensity-based measurements. Applications include fluorescence lifetime assays, sensing and FLI.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service