Skip to Content
MilliporeSigma
  • Stem cell factor and NSC87877 synergism enhances c-Kit mediated proliferation of human erythroid cells.

Stem cell factor and NSC87877 synergism enhances c-Kit mediated proliferation of human erythroid cells.

Life sciences (2018-10-12)
Pawan Kumar Raghav, Ajay Kumar Singh, Gurudutta Gangenahalli
ABSTRACT

The biological mechanisms underlying the effects of stem cell factor (SCF) and an inhibitor, NSC87877 (N) of the c-Kit negative regulator (SHP-1 and SHP-2) on cell proliferation are different. Therefore, we compared the cell's response to these two either alone or in combination in K562 cells. Binding of SCF (S) to c-Kit induces dimerization that activates its kinase activity. The activated c-Kit undergoes autophosphorylation at tyrosine residues that serve as a docking site for signal transduction molecules containing SH2 domains. Predominantly, the phosphotyrosine 568 (pY568) in Juxtamembrane (JM) region of c-Kit interacts with adaptor protein APS, Src family kinase, and SHP-2, while phosphotyrosine 570 (pY570) interacts with the SHP-1 and the adaptor protein Shc. The dephosphorylation of phosphotyrosine residues by SHP-1/SHP-2 leads to inhibition of c-Kit proliferative signaling. A chemical molecule, N is reported to inhibit the enzymatic activity of SHP-1/SHP-2, but its effect on c-Kit-mediated proliferation has not been studied yet. Thus, this work aims at examining the effect of the combination of S and N on cells growth as compared to individual treatment. The present study is performed with erythroleukemic K562 cells, chosen for its mRNA expression concerning the c-Kit, and SHP-1/SHP-2. Interestingly, proliferation assay showed that combination significantly increased proliferation when G1 sorted K562 cells were used. These changes were significantly higher when K562 cells were initially treated with N followed by S treatment. Collectively, these results give mechanistic insight into the proliferation enhancement of bone marrow transplantation through the synergistic effect of S and N by inhibiting SHP-1/SHP-2. The study gives solid evidence that S and N combination can be used to enhance cell proliferation/growth.