Skip to Content
MilliporeSigma
  • Coenzyme Q10 protects against burn-induced mitochondrial dysfunction and impaired insulin signaling in mouse skeletal muscle.

Coenzyme Q10 protects against burn-induced mitochondrial dysfunction and impaired insulin signaling in mouse skeletal muscle.

FEBS open bio (2019-02-15)
Harumasa Nakazawa, Kazuhiro Ikeda, Shohei Shinozaki, Shingo Yasuhara, Yong-Ming Yu, J A Jeevendra Martyn, Ronald G Tompkins, Tomoko Yorozu, Satoshi Inoue, Masao Kaneki
ABSTRACT

Mitochondrial dysfunction is associated with metabolic alterations in various disease states, including major trauma (e.g., burn injury). Metabolic derangements, including muscle insulin resistance and hyperlactatemia, are a clinically significant complication of major trauma. Coenzyme Q10 (CoQ10) is an essential cofactor for mitochondrial electron transport, and its reduced form acts as a lipophilic antioxidant. Here, we report that burn injury induces impaired muscle insulin signaling, hyperlactatemia, mitochondrial dysfunction (as indicated by suppressed mitochondrial oxygen consumption rates), morphological alterations of the mitochondria (e. g., enlargement, and loss of cristae structure), mitochondrial oxidative stress, and disruption of mitochondrial integrity (as reflected by increased mitochondrial DNA levels in the cytosol and circulation). All of these alterations were significantly alleviated by CoQ10 treatment compared with vehicle alone. These findings indicate that CoQ10 treatment is efficacious in protecting against mitochondrial dysfunction and insulin resistance in skeletal muscle of burned mice. Our data highlight CoQ10 as a potential new strategy to prevent mitochondrial damage and metabolic dysfunction in burn patients.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-α-Insulin Receptor Antibody, β subunit, Upstate®, from rabbit
Sigma-Aldrich
Anti-IRS1 Antibody, Upstate®, from rabbit