Skip to Content
MilliporeSigma
  • Synthesis of Monoacryloxypropyl-POSS-based Hybrid Epoxyacrylate Copolymers and Their Application in Thermally Curable Structural Self-Adhesive Tapes.

Synthesis of Monoacryloxypropyl-POSS-based Hybrid Epoxyacrylate Copolymers and Their Application in Thermally Curable Structural Self-Adhesive Tapes.

Polymers (2019-12-15)
Agnieszka Kowalczyk, Krzysztof Kowalczyk, Konrad Gziut
ABSTRACT

New organic-inorganic hybrid copolymers (EA-POSSs) based on butyl acrylate, glycidyl methacylate, hydroxybutyl acrylate, acryloiloxybenzophenone and acryloxypropyl-heptaisobutyl-POSS (A-POSS) were prepared via free-radical solution polymerization (FRP) and applied as a component of thermally curable structural self-adhesive tapes (SATs). The EA-POSS with 0.25, 0.5 or 1 mol % of A-POSS exhibited significantly higher dynamic viscosity (ca. +104%), Mw (+61%) and polydispersity (+109%; measured using gel permeation chromatography) as well as lower Tg value (-16 °C) in relation to the A-POSS-free copolymer (EA-0). Differential scanning calorimetry (DSC) measurements (one glass transition process) confirmed statistic chain structure of the EA-POSS materials. Replacement of EA-0 by the EA-POSS copolymers in a SATs recipe caused simultaneous improvement of their self-adhesive features, i.e., adhesion (+70%), tack (+21%) and cohesion (+1590%). Moreover, the POSS-based copolymers improved the shear strength of thermally cured Al/SAT/Al overlap joints; the best mechanical resistance (before and after accelerated ageing tests) was observed for the sample containing 0.5 mol % of A-POSS (an increment range of 50-294% in relation to the A-POSS-free joints). Thermogravimetric analysis (TGA) revealed markedly improved thermal stability of the A-POSS-based SATs as well.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
4-Hydroxybutyl acrylate, 90%, contains 50 ppm monomethyl ether hydroquinone as inhibitor, 300 ppm hydroquinone as inhibitor