- Peptide nucleic acid based tension sensor for cellular force imaging with strong DNase resistance.
Peptide nucleic acid based tension sensor for cellular force imaging with strong DNase resistance.
DNA is a versatile biomaterial with well-defined mechanical and biochemical properties. It has been broadly adopted to synthesize tension sensors that calibrate and visualize cellular forces at the cell-matrix interface. Here we showed that DNA-based tension sensors are vulnerable to deoxyribonucleases (DNases) which cells may express on cell membrane or secret to the culture environment. These DNases can damage the sensors, lower signal-to-noise ratio or even produce false signal in cellular force imaging. To address this issue, we tested peptide nucleic acid (PNA), chemically modified RNA and their hybrids with DNA as alternative biomaterials for constructing tension sensors. Four duplexes: double-stranded DNA (dsDNA), PNA/DNA, dsRNA (modified RNA) and PNA/RNA, were tested and evaluated in terms of DNase resistance, cellular force imaging ability and material robustness. The results showed that all PNA/DNA, dsRNA and PNA/RNA exhibited strong resistance to both soluble DNase I and membrane-bound DNase on cells. However, PNA/RNA-based tension sensor had low signal-to-noise ratio in cellular force imaging, and dsRNA-based tension sensor exhibited strong non-specific signal unrelated to cellular forces. Only PNA/DNA-based tension sensor reported cellular forces with highest signal-to-noise ratio and specificity. Collectively, we confirmed that PNA/DNA hybrid is an accessible material for the synthesis of DNase-resistant tension sensor that retains the force-reporting capability and remains stable in DNase-expressing cells. This new class of tension sensors will broaden the application of tension sensors in the study of cell mechanobiology.