Skip to Content
MilliporeSigma
  • Therapeutic manipulation of IKBKAP mis-splicing with a small molecule to cure familial dysautonomia.

Therapeutic manipulation of IKBKAP mis-splicing with a small molecule to cure familial dysautonomia.

Nature communications (2021-07-25)
Masahiko Ajiro, Tomonari Awaya, Young Jin Kim, Kei Iida, Masatsugu Denawa, Nobuo Tanaka, Ryo Kurosawa, Shingo Matsushima, Saiko Shibata, Tetsunori Sakamoto, Lorenz Studer, Adrian R Krainer, Masatoshi Hagiwara
ABSTRACT

Approximately half of genetic disease-associated mutations cause aberrant splicing. However, a widely applicable therapeutic strategy to splicing diseases is yet to be developed. Here, we analyze the mechanism whereby IKBKAP-familial dysautonomia (FD) exon 20 inclusion is specifically promoted by a small molecule splice modulator, RECTAS, even though IKBKAP-FD exon 20 has a suboptimal 5' splice site due to the IVS20 + 6 T > C mutation. Knockdown experiments reveal that exon 20 inclusion is suppressed in the absence of serine/arginine-rich splicing factor 6 (SRSF6) binding to an intronic splicing enhancer in intron 20. We show that RECTAS directly interacts with CDC-like kinases (CLKs) and enhances SRSF6 phosphorylation. Consistently, exon 20 splicing is bidirectionally manipulated by targeting cellular CLK activity with RECTAS versus CLK inhibitors. The therapeutic potential of RECTAS is validated in multiple FD disease models. Our study indicates that small synthetic molecules affecting phosphorylation state of SRSFs is available as a new therapeutic modality for mechanism-oriented precision medicine of splicing diseases.

MATERIALS
Product Number
Brand
Product Description

RECTAS, ≥98% (HPLC)
Sigma-Aldrich
Anti-U1-70K Antibody, clone 9C4.1, clone 9C4.1, from mouse
Sigma-Aldrich
Anti-Brn-3a Antibody, POU-domain protein, clone 5A3.2, culture supernatant, clone 5A3.2, Chemicon®