Skip to Content
MilliporeSigma
  • NanoLuc reporters identify COL4A5 nonsense mutations susceptible to drug-induced stop codon readthrough.

NanoLuc reporters identify COL4A5 nonsense mutations susceptible to drug-induced stop codon readthrough.

iScience (2022-03-05)
Kohei Omachi, Hirofumi Kai, Michel Roberge, Jeffrey H Miner
ABSTRACT

Alport syndrome, a disease of kidney, ear, and eye, is caused by pathogenic variants in the COL4A3, COL4A4, or COL4A5 genes encoding collagen α3α4α5(IV) of basement membranes. Collagen IV chains that are truncated due to nonsense variants/premature termination codons (PTCs) cannot assemble into heterotrimers or incorporate into basement membranes. To investigate the feasibility of PTC readthrough therapy for Alport syndrome, we utilized two NanoLuc reporters in transfected cells: full-length for monitoring translation, and a split version for assessing readthrough product function. Full-length assays of 49 COL4A5 nonsense variants identified eleven as susceptible to PTC readthrough using various readthrough drugs. In split-NanoLuc assays, the predicted missense α5(IV) readthrough products of five nonsense mutations could heterotrimerize with α3(IV) and α4(IV). Readthrough was also observed in kidney cells from an engineered Col4a5 PTC mouse model. These results suggest that readthrough therapy is a feasible approach for a fraction of patients with Alport syndrome.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Laminin antibody produced in rabbit, 0.5 mg/mL, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Brefeldin A, ≥99% (HPLC and TLC), BioXtra, for molecular biology
Sigma-Aldrich
G 418 disulfate salt solution, 50 mg/mL in H2O, 0.1 μm filtered, BioReagent, suitable for cell culture