Skip to Content
MilliporeSigma
  • Paradoxical Inhibition of Glycolysis by Pioglitazone Opposes the Mitochondriopathy Caused by AIF Deficiency.

Paradoxical Inhibition of Glycolysis by Pioglitazone Opposes the Mitochondriopathy Caused by AIF Deficiency.

EBioMedicine (2017-02-24)
Paule Bénit, Alice Pelhaître, Elise Saunier, Sylvie Bortoli, Assetou Coulibaly, Malgorzata Rak, Manuel Schiff, Guido Kroemer, Massimo Zeviani, Pierre Rustin
ABSTRACT

Mice with the hypomorphic AIF-Harlequin mutation exhibit a highly heterogeneous mitochondriopathy that mostly affects respiratory chain complex I, causing a cerebral pathology that resembles that found in patients with AIF loss-of-function mutations. Here we describe that the antidiabetic drug pioglitazone (PIO) can improve the phenotype of a mouse Harlequin (Hq) subgroup, presumably due to an inhibition of glycolysis that causes an increase in blood glucose levels. This glycolysis-inhibitory PIO effect was observed in cultured astrocytes from Hq mice, as well as in human skin fibroblasts from patients with AIF mutation. Glycolysis inhibition by PIO resulted from direct competitive inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Moreover, GAPDH protein levels were reduced in the cerebellum and in the muscle from Hq mice that exhibited an improved phenotype upon PIO treatment. Altogether, our results suggest that excessive glycolysis participates to the pathogenesis of mitochondriopathies and that pharmacological inhibition of glycolysis may have beneficial effects in this condition.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Glyceraldehyde-3-phosphate Dehydrogenase from rabbit muscle, lyophilized powder, ≥75 units/mg protein
Sigma-Aldrich
3-Phosphoglyceric Phosphokinase from baker′s yeast (S. cerevisiae), ammonium sulfate suspension, ≥500 units/mg protein