Skip to Content
MilliporeSigma
  • Stress Conditions Affect the Immunomodulatory Potential of Candida albicans Extracellular Vesicles and Their Impact on Cytokine Release by THP-1 Human Macrophages.

Stress Conditions Affect the Immunomodulatory Potential of Candida albicans Extracellular Vesicles and Their Impact on Cytokine Release by THP-1 Human Macrophages.

International journal of molecular sciences (2023-12-23)
Kamila Kulig, Katarzyna Bednaruk, Elzbieta Rudolphi-Szydło, Anna Barbasz, Ewelina Wronowska, Olga Barczyk-Woznicka, Elzbieta Karnas, Elzbieta Pyza, Ewa Zuba-Surma, Maria Rapala-Kozik, Justyna Karkowska-Kuleta
ABSTRACT

Human immune cells possess the ability to react complexly and effectively after contact with microbial virulence factors, including those transported in cell-derived structures of nanometer sizes termed extracellular vesicles (EVs). EVs are produced by organisms of all kingdoms, including fungi pathogenic to humans. In this work, the immunomodulatory properties of EVs produced under oxidative stress conditions or at host concentrations of CO2 by the fungal pathogen Candida albicans were investigated. The interaction of EVs with human pro-monocytes of the U-937 cell line was established, and the most notable effect was attributed to oxidative stress-related EVs. The immunomodulatory potential of tested EVs against human THP-1 macrophages was verified using cytotoxicity assay, ROS-production assay, and the measurement of cytokine production. All fungal EVs tested did not show a significant cytotoxic effect on THP-1 cells, although a slight pro-oxidative impact was indicated for EVs released by C. albicans cells grown under oxidative stress. Furthermore, for all tested types of EVs, the pro-inflammatory properties related to increased IL-8 and TNF-α production and decreased IL-10 secretion were demonstrated, with the most significant effect observed for EVs released under oxidative stress conditions.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ethylenediaminetetraacetic acid tetrasodium salt dihydrate, BioReagent, suitable for cell culture, 98.5-102.0%
Sigma-Aldrich
PMA, for use in molecular biology applications, ≥99% (HPLC)