Skip to Content
MilliporeSigma
  • Therapeutic inhibition of CXCR2 by Reparixin attenuates acute lung injury in mice.

Therapeutic inhibition of CXCR2 by Reparixin attenuates acute lung injury in mice.

British journal of pharmacology (2008-07-01)
A Zarbock, M Allegretti, K Ley
ABSTRACT

Acute lung injury (ALI) remains a major challenge in critical care medicine. Both neutrophils and chemokines have been proposed as key components in the development of ALI. The main chemokine receptor on neutrophils is CXCR2, which regulates neutrophil recruitment and vascular permeability, but no small molecule CXCR2 inhibitor has been demonstrated to be effective in ALI or animal models of ALI. To investigate the functional relevance of the CXCR2 inhibitor Reparixin in vivo, we determined its effects in two models of ALI, induced by either lipopolysaccharide (LPS) inhalation or acid instillation. In two ALI models in mice, we measured vascular permeability by Evans blue and evaluated neutrophil recruitment into the lung vasculature, interstitium and airspace by flow cytometry. Pharmacological inhibition of CXCR2 by Reparixin reduced CXCL1-induced leukocyte arrest in the microcirculation of the cremaster muscle, but did not influence arrest in response to leukotriene B4 (LTB4) demonstrating specificity. Reparixin (15 microg g(-1)) reduced neutrophil recruitment in the lung by approximately 50% in a model of LPS-induced ALI. A higher dose did not provide additional reduction of neutrophil recruitment. This dose also reduced accumulation of neutrophils in the interstitial compartment and vascular permeability in LPS-induced ALI. Furthermore, both prophylactic and therapeutic application of Reparixin improved gas exchange, and reduced neutrophil recruitment and vascular permeability in a clinically relevant model of acid-induced ALI. Reparixin, a non-competitive allosteric CXCR2 inhibitor attenuates ALI by reducing neutrophil recruitment and vascular permeability.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Evans Blue, Dye content ≥75 %
Sigma-Aldrich
Lipopolysaccharides from Salmonella enterica serotype enteritidis, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
Lipopolysaccharides from Salmonella enterica serotype enteritidis, purified by phenol extraction
Sigma-Aldrich
Lipopolysaccharides from Salmonella enterica serotype enteritidis, purified by ion-exchange chromatography
Sigma-Aldrich
Lipopolysaccharides from Salmonella enterica serotype enteritidis, purified by gel-filtration chromatography