- A novel plasmid for detection of N-acyl homoserine lactones.
A novel plasmid for detection of N-acyl homoserine lactones.
Many bacteria utilize acyl-homoserine lactones as cell to cell signals that can regulate the expression of numerous genes. Structural differences in acyl-homoserine lactones produced by different bacteria, such as acyl side chain length and the presence or absence of an oxy group, make many of the commonly used detection bioassays impractical for broad range detection. Here we present a simple, broad range acyl-homoserine lactone detection bioassay that can be used to detect a wide range of these chemical signals. A plasmid (pEAL01) was constructed and transformed into Pseudomonas aeruginosa strain QSC105 to allow for detection of a broad range of acyl-homoserine lactones through induction of a lasB'-lacZ transcriptional fusion. Monitoring beta-galactosidase activity from this bioassay showed that P. aeruginosa strain QSC105 (pEAL01) could detect the presence of eight acyl-homoserine lactones tested at physiological concentrations. This novel strain could also detect acyl-homoserine lactones from the extracts of four different bacteria that produce different acyl-homoserine lactones signals. These data indicate that strain QSC105 (pEAL01) can be used to detect a wide variety of acyl-homoserine lactones by a simple beta-galactosidase assay and this bioassay could be a useful and inexpensive tool to quickly identify the presence of these signal molecules.