Skip to Content
MilliporeSigma
  • MMA/MPEOMA/VSA copolymer as a novel blood-compatible material: ex vivo platelet adhesion study.

MMA/MPEOMA/VSA copolymer as a novel blood-compatible material: ex vivo platelet adhesion study.

Journal of materials science. Materials in medicine (2004-08-28)
Jin Ho Lee, Se Heang Oh, Won Gon Kim
ABSTRACT

MMA/MPEOMA/VSA copolymers with both pendant polyethylene oxide (PEO) side chains and negatively chargeable side groups were synthesized by random copolymerization of methyl methacrylate (MMA), methoxy PEO monomethacrylate (MPEOMA; PEO mol. wt, 1000), and vinyl sulfonic acid sodium salt (VSA) monomers with different monomer composition to evaluate their blood compatibility. MMA/MPEOMA copolymer (with PEO side chains) and MMA/VSA copolymer (with negatively chargeable side groups) were also synthesized for the comparison purpose. The synthesized copolymers were coated onto polyurethane (PU) tubes (inner diameter, 4.6 mm) by a spin coating. The platelet adhesion of the MMA/MPEOMA/VSA copolymer-coated tube surfaces was compared with that of tube surface coated with MMA/MPEOMA or MMA/VSA copolymer with similar MPEOMA or VSA composition, using an ex vivo canine arterio-artery shunt method. The platelet adhesion was evaluated by radioactivity counting of technetium (99mTc)-labeled platelets adhered on the surfaces after 30 and 120 min of blood circulation. The MMA/MPEOMA/VSA copolymer (monomer molar ratio 9/0.5/0.5 or 8/1/1) was better in preventing platelet adhesion on the surface than the MMA/MPEOMA or MMA/VSA copolymer with similar MPEOMA or VSA composition, probably owing to the combined effects of highly mobile, hydrophilic PEO side chains and negatively charged VSA side groups.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
2-Amino-1-phenylethanol, 98%