Skip to Content
MilliporeSigma
  • A Gluconobacter oxydans mutant converting glucose almost quantitatively to 5-keto-D-gluconic acid.

A Gluconobacter oxydans mutant converting glucose almost quantitatively to 5-keto-D-gluconic acid.

Applied microbiology and biotechnology (2005-03-01)
Mustafa Elfari, Seung-Wook Ha, Christoph Bremus, Marcel Merfort, Viola Khodaverdi, Ute Herrmann, Hermann Sahm, Helmut Görisch
ABSTRACT

Gluconobacter oxydans converts glucose to gluconic acid and subsequently to 2-keto-D-gluconic acid (2-KGA) and 5-keto-D-gluconic acid (5-KGA) by membrane-bound periplasmic pyrroloquinoline quinone-dependent and flavin-dependent dehydrogenases. The product pattern obtained with several strains differed significantly. To increase the production of 5-KGA, which can be converted to industrially important L-(+)-tartaric acid, growth parameters were optimized. Whereas resting cells of G. oxydans ATCC 621H converted about 11% of the available glucose to 2-KGA and 6% to 5-KGA, with growing cells and improved growth under defined conditions (pH 5, 10% pO2, 0.05% pCO2) a conversion yield of about 45% 5-KGA from the available glucose was achieved. As the accumulation of the by-product 2-KGA is highly disadvantageous for an industrial application of G. oxydans, a mutant was generated in which the membrane-bound gluconate-2-dehydrogenase complex was inactivated. This mutant, MF1, grew in a similar way to the wild type, but formation of the undesired 2-KGA was not observed. Under improved growth conditions, mutant MF1 converted the available glucose almost completely (84%) into 5-KGA. Therefore, this newly developed recombinant strain is suitable for the industrial production of 5-KGA.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
5-Keto-D-gluconic acid potassium salt, ≥98.0% (TLC)