Skip to Content
MilliporeSigma
  • Dynamic kinetic resolution of secondary alcohols combining enzyme-catalyzed transesterification and zeolite-catalyzed racemization.

Dynamic kinetic resolution of secondary alcohols combining enzyme-catalyzed transesterification and zeolite-catalyzed racemization.

Chemistry (Weinheim an der Bergstrasse, Germany) (2006-09-28)
Yongzhong Zhu, Kam-Loon Fow, Gaik-Khuan Chuah, Stephan Jaenicke
ABSTRACT

Hydrophobic zeolite beta containing low concentrations of Zr or Al was found to be a good catalyst for the racemization of 1-phenylethanol. The formation of styrene as a side product could be minimized by reducing the metal concentration in the zeolite beta. Combined with an immobilized lipase from Candida antarctica, the dynamic kinetic resolution of 1-phenylethanol to the (R)-phenylethylester can be achieved with high yield and selectivity. The reaction was best conducted in toluene as solvent at 60 degrees C, with higher temperatures leading to a loss in the enantioselectivity of the formed ester. By using high-molecular-weight acyl-transfer reagents, such as vinyl butyrate or vinyl octanoate, a high enantiomeric excess of the product esters of 92 and 98 %, respectively, could be achieved. This is attributed to a steric effect: the bulky ester is less able to enter the pore space of the zeolite catalyst where the active sites for racemization are localized. Close to 100 % conversion of the alcohol was achieved within 2 h. If the more common acyl donor, isopropenyl acetate, was used, the enantiomeric excess (ee) of the formed ester was only 67 %, and the reaction was considerably slower.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
1-Phenylethanol, 98%
Sigma-Aldrich
α-Methylbenzyl alcohol, ≥99%, FCC, FG
Sigma-Aldrich
Vinyl butyrate, contains 20 ppm 4-methoxyphenol as stabilizer, ≥99.0% (GC)